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Reproductive performance is the currency of evolution. All things being equal,
an organism should reproduce as often as possible. The puzzling questions in evo-
lutionary biology, therefore, are not how and why an organism does reproduce,
but rather how and why an organism does not reproduce. It is difficult to under-
stand why any individual, particularly a female, might forestall reproduction when
one of the biggest limitations for female mammalian reproduction is time (that is,
reproductive lifespan).1 The answer, now widely cited throughout behavioral ecol-
ogy is quite simple: Reproductive suppression can be an adaptive strategy.2

Mammalian female reproduction
is a costly endeavor that may have a
high chance of failure under subopti-
mal circumstances. Therefore, over
evolutionary time, natural selection
should have favored females that are
sensitive to environmental cues and
able to suppress their own reproduc-
tion when current prospects for
reproductive success are poor. This
idea, known as the reproductive sup-
pression model,2 maintains that

females may increase their lifetime
reproductive success by restricting
reproduction to coincide with favor-
able conditions. Thus, the general
rule of thumb is this: If prevailing
conditions are poor, delay reproduc-
tion to preserve energy for future
reproduction; if conditions are likely
to remain the same or get worse,
carry on with reproduction.

Several assumptions are associated
with this model.2 First, female repro-
duction should be sensitive to all
cues that are predictive of poor
reproductive outcomes and natural
selection should favor females that
are able to translate these cues cor-
rectly into reproductive decisions.
Second, females should suppress
reproduction as soon as a cue is
available because the earlier the loss,
the less it affects a female’s subse-
quent reproduction. Third, females
should use only cues that reliably
predict poor reproductive perform-
ance because it is costly to suppress
a reproductive event that would oth-
erwise have been successful. Fourth,
reproductive suppression should be
regulated by the female herself, and
thus differs from the more general
term “reproductive failure,” which
also includes externally imposed
sources of loss, such as disease,
injury, or infanticide.

A comprehensive review of the
reproductive suppression model is
not possible here. Therefore, we
restrict this review in three impor-
tant ways. First, we focus on within-
population comparisons and exam-
ine why one female might reproduce
successfully while another in the
same population might not.
Between-species comparisons that
explore life-history evolution across
taxa have received excellent coverage
elsewhere.1

Second, although we briefly review
the energetic causes of reproductive
suppression, we focus primarily on
social causes (Fig. 1). Certainly, a
female’s physiology should be sensi-
tive to all cues that indicate harsh
reproductive conditions: their own
energy balance and health, the physi-
cal and genetic status of their
embryo or fetus, and the local envi-
ronmental conditions.3 But social
pressures are among the most dra-
matic and least understood factors
affecting female reproduction.

Third, in the spirit of this special
issue, we would like to highlight the
work by Jeanne Altmann and Sarah
Hrdy, who have substantially furth-
ered our understanding of reproduc-
tive suppression. In her
groundbreaking work with wild yel-
low baboons in Amboseli National
Park, Kenya, Jeanne Altmann has
demonstrated that living in a
resource-poor and unpredictable
environment can have dramatic con-
sequences on female fitness across
the life span.4–9 Similarly, Sarah Hrdy
has established much of the ground-
work for testing hypotheses related to
social suppression in female primates
through her empirical work with the
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Hanuman langurs of Mt. Abu,
India,10,11 and her theoretical ideas
about infanticide.12–14

In what follows, we provide an
overview of reproductive suppres-
sion in female primates, paying
particular attention to two different
levels of analysis: an ultimate (func-
tional) and a proximate (mechanis-
tic) perspective (Fig. 2). From a
functional perspective, we ask why
females suppress their own repro-
duction. That is, what are the fit-
ness benefits? To answer this
question, we review the consequen-
ces of reproducing under conditions
in which the prospects for success
are poor. Second, from a proximate
perspective, we ask how females
suppress their own reproduction.
That is, what mechanisms are
involved? There are two ways to
answer this question. We can
explore the cues themselves or how
we can examine these cues are
translated into reproductive sup-

pression via neuroendocrine mecha-
nisms. In some cases, these are one
and the same; the factors that serve
as proximate cues indicating a sub-
optimal environment are the same
ones that trigger reproductive sup-
pression (for example, poor ener-
getic condition). In most cases,
however, the cues that reliably pre-
dict reproductive failure are not
inherently linked to reproductive
suppression (for example, the
arrival of a new male). In the inter-
est of bridging function and mecha-
nism, we focus on both the cues as
well as the specific neuroendocrine
mechanisms. We ask “why” and
“how” questions as two related lines
of inquiry. Just as the blind man
cannot completely describe an ele-
phant by holding onto its tail, we
specifically hope to emphasize how
integrating answers at different lev-
els can help us emerge with a bet-
ter understanding of reproductive
suppression in female primates.

ENERGETIC SUPPRESSION

Mammalian female reproduction
requires a great deal of energy.16

When food is limited or entails high
acquisition costs, organisms must
make allocation decisions to priori-
tize the partitioning of metabolic
fuels. For many long-lived organisms,
individual survival is paramount
thus, when energy is at a minimum,
basic cellular processes critical for
survival take precedence over proc-
esses that can be compromised, such
as reproduction.17 However, even
when survival is not at stake, females
should abandon reproductive efforts
as soon as they detect that they do not
have enough energy to complete
them. Energetic suppression is
defined as the self-imposed inhibition
of reproductive physiology in other-
wise fertile individuals in response to
an internal metabolic cue that indi-
cates a poor reproductive outcome.
To be clear, “self-imposed inhibition”
does not involve any conscious deci-
sion by the female, but is mediated by
a metabolic signal triggered in
response to an appropriate cue. The
specifics that underlie this metabolic
pathway have yet to be fully identi-
fied, but it is becoming increasingly
clear that integrative control of
energy balance and reproduction is
carried out by multiple metabolic and
neuroendocrine signals. Research on
how females suppress reproduction
in response to energetic signals is still
rapidly developing, and we refer read-
ers to recent reviews of this topic.17,18

The question of why females sup-
press reproduction in response to
limited energy is easier to tackle.
Energetic suppression is common in
species in which physical condition
must meet a threshold before initiat-
ing reproduction (capital breeders).19

This energetic threshold presumably
indicates whether a mother will be
able to partition the necessary
energy to reproduction on an
ongoing basis. In contrast, other spe-
cies exclusively rely on external cues
to initiate reproduction (income
breeders). These external cues enable
females to schedule more energeti-
cally demanding stages of reproduc-
tion with a reliable and predictable
abundance of resources.19 Few

Figure 1. Routes to reproductive suppression. It has been notoriously difficult to separate
rank-related reproductive dysfunction caused directly by elevated levels of social stress
from that caused indirectly by nutritional insufficiencies. Here, we focus mainly on empiri-
cal studies in primates that have demonstrated a direct link between the social environ-
ment and female reproductive failure (red arrow). Note that although dominance rank
is a component of the social environment, it can mediate fitness in two ways: through
the ecological environment (for example, by restricting energy intake, increasing energy
expenditure, or both) and through the social environment (for example, via social stress
or social suppression of subordinates). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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primates are strictly capital or
income breeders, and primates with-
out a strict breeding season probably
use a combination of internal and
external cues. Therefore, with all the
uncertainty that comes with a
lengthy investment period, most pri-
mates should be able to abandon
reproduction at any time.

Captive studies of primates have
unambiguously confirmed that inad-
equate maternal energy is associated
with reproductive dysfunction. For
example experimental manipulations
involving food deprivation were able
to induce amenorrhea in common
marmosets20 or pregnancy loss in
rhesus macaques.21 Similarly, strenu-
ous exercise without a corresponding
increase in caloric intake resulted in
amenorrhea in rhesus macaques.22

However, captive studies do not pro-
vide the multi-dimensional aspects of
the natural lives of female primates
where a multitude of social and envi-
ronmental factors contribute to vari-
able reproductive outcomes. Some of
the best examples of the adaptive sig-
nificance of energetic suppression in
wild primates derive from Jeanne Alt-
mann’s long-term studies on Amboseli
yellow baboons. Altmann and her col-
leagues found that a resource-rich
environment can dramatically improve
female reproductive outcomes. In one
group, baboons supplemented their
diet with scraps from the garbage of a
nearby tourist lodge23, while in

another group, severe habitat degrada-
tion, forced individuals to move to a
new home range with more abundant
food resources.9 In both cases, female
baboons in the improved foraging
environments matured earlier and
exhibited higher fertility.8,9 Another
study on the Amboseli baboons pro-
vided direct support for the role of
energetics in female reproductive sup-
pression. During drought periods,
females were much less likely to ovu-
late; if they ovulated, they were less
likely to conceive and if they con-
ceived, they were less likely to carry
the pregnancy to term.24

Studies from Amboseli and other
wild primate populations have dem-
onstrated that female fertility declines
as the number of competitors for
resources goes up.24–26 For example,
female yellow baboons in larger
groups exhibited longer interbirth
intervals than did females in smaller
groups.9 Similarly, during drought
periods, the probability of conception
decreased as the number of females
in the group increased.24

Numerous studies have shown that
the costs of living in a primate group
may not affect all females equally,
particularly in species with strict dom-
inance relationships, such as cercopi-
thecines. Across cercopithecines, low
maternal rank is often associated with
a later age at maturation,27–29 longer
interbirth intervals,9,26,31,32 and later
age at first birth.26,28 Possibly media-

ting the link between energetic condi-
tion and reproductive rate, one study
on female yellow baboons reported
that (for females of all ranks), success-
ful implantation was facilitated by rel-
atively high levels of progesterone
shortly after ovulation.33 However,
the progesterone threshold for proper
implantation was higher in subordi-
nate females than in dominants.
Thus, an elevated threshold for
implantation may actually serve as a
“reproductive filter,” reducing the
probability of conception in females
most likely to be affected by
harsh environmental conditions (i. e.
subordinate).

The relationships among group size,
dominance rank, and fertility may be
indirectly mediated by access to
resources, directly mediated by social
stress, or a combination of both. Sepa-
rating the relative contributions of
each mechanism is critical for making
predictions about which populations
are likely to exhibit rank-related or
group-size differences in female repro-
duction and under what conditions.
Social variables are likely to interact
with energetic ones to generate an
adaptive reproductive “decision.” To
date, social suppression of reproduc-
tion has largely been ignored in many
primates, despite evidence that social
interactions can have major impacts
on female fitness. For this reason, we
focus the remainder of our review on
social suppression.

Figure 2. Overview of proximate (orange and purple) and functional (green) pathways that produce social suppression of reproduction
in female primates. In this model, selection should favor females that translate external social cues appropriately. Note that the costs
caused by reproductive suppression could lead to lower reproductive success if social cues become unreliable and females that
“reproduce anyway” are successful. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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SOCIAL SUPPRESSION

Social suppression is said to occur
when reproduction in otherwise fer-
tile individuals is delayed, inhibited,
or terminated in response to social
cues.2 It is independent from other
factors that may influence reproduc-
tion, such as energy balance, physi-
cal health, and day length. Sarah
Hrdy was one of the first to highlight
the fact that social factors can have
dramatic effects on female reproduc-
tive success. Her landmark work on
infanticide in langurs and other pri-
mates10,12,13 stimulated interest in
how females can reduce the costs of
such interactions.

A FUNCTIONAL PERSPECTIVE ON
SOCIAL SUPPRESSION: WHY IS
REPRODUCTIVE SUPPRESSION

ADVANTAGEOUS?

Delayed Maturation to Avoid
Inbreeding

In most taxa, males or females do
not remain in their natal group long
enough for inbreeding to occur.
However, among primates there are
some notable exceptions. For exam-
ple, in the cooperatively breeding
callitrichids (marmosets and tamar-
ins), daughters routinely remain in
their natal groups well past the age
of puberty,34 possibly due to a short-
age of productive territories and/or
the inclusive fitness benefits or expe-
rience gained from helping to raise
siblings in the natal group.35 Another
example comes from our own
research on a wild population of
geladas in the Simien Mountains
National Park, Ethiopia. Geladas live
in polygynous one-male units in
which leader males occasionally
maintain extensive reproductive ten-
ures (maximum mate tenure, 6.9
years) that are well past the age at
puberty for females in this popula-
tion (manage at puberty 4.7 years).
Yet for both callitrichids and gela-
das, females are able to avoid
inbreeding because (for the most
part) they are able to delay puberty
under certain conditions.

Life-history theory predicts that the
timing of puberty should reflect a bal-
ance between the costs of diverting

energy from growth and the benefits
of reproducing earlier. However,
social factors, such as the availability
of suitable mates, may influence this
calculus. When only kin are
“available” as mates, the costs of
inbreeding might shift the balance
toward investing in growth and delay-
ing the onset of reproduction. In
rodents, the presence of unrelated
males is able to accelerate puberty in
juvenile females,36 a phenomenon
known as the Vandenbergh effect.
The Vandenbergh effect encompasses
two levels of control: the inhibition of
reproduction when social cues indi-
cate high competition or no appropri-
ate mates, and the stimulation of
reproduction once these inhibitory
cues are lifted. Such social inhibition
and stimulation of puberty clearly
operate in callitrichids and may
explain the timing of puberty in some
catarrhines, like geladas.

Among callitrichids (with a few
exceptions37,38), female daughters
that remain in their natal group
exhibit some degree of ovulatory sup-
pression in the presence of the domi-
nant breeding female (usually the
mother).34 Subordinate females
remain anovulatory until social con-
ditions change. The social conditions
necessary for the full onset of puberty
in subordinates, including ovulation,
mating, and conception, varies by
species. For example, puberty in at
least two species of marmosets
requires only the removal of the dom-
inant female;38,39 while puberty in
cotton-top tamarins requires the
introduction of a novel male as
well40,41 (but see French, Abbott, and
Snowdom42and Heistermann and
coworkers43). Occasionally, subordi-
nate marmoset daughters ovulate in
the presence of their mothers.39

Remarkably, the best predictor of this
“escape” from reproductive suppres-
sion is the relationship of these
daughters with their mother. Daugh-
ters that do not show submission to
their mothers are the ones that
ovulate.39

Puberty is a complex process that is
affected by both life-history parame-
ters and social cues. For instance,
female callitrichids are able to ovulate
only a few short weeks after removal
from the dominant female44 and pair-

ing with a novel male,40 which pre-
sumably is too short a time to
encompass the entire maturational
process. Moreover, ovulating females
will sometimes quickly revert to an
anovulatory condition at the first
signs of social subordination.45 Con-
sequently, it has been proposed that
suppressed females are not delaying
puberty at all; that is, the reproduc-
tive axis undergoes sexual matura-
tion, but puberty is masked by
immediate ovulatory suppression.40

Thus, a more accurate characteriza-
tion in callitrichids may be that sub-
ordinate females are released from or
inhibited by family-induced fertility
suppression.

Among catarrhines, we know of
only two cases suggesting that males
have an effect on female puberty. The
first is an anecdote from captive ham-
adryas baboons, a species that lives in
relatively “closed” one-male polygy-
nous units. The arrival of a new male
in a captive group was followed by
the sudden, early maturation of four
young females, as determined by their
first signs of perineal sexual swel-
lings.46 The second case is from our
population of geladas, who also
exhibit closed reproductive one-male
units.47 When we examined the tim-
ing of puberty for gelada females, we
found two striking patterns. First,
puberty was disproportionately more
likely to occur the week after the
arrival of an unrelated male.48 An
examination of the timing of female
maturation found that there was an
11-fold increase in maturations the
week after a new male arrived as com-
pared to the background rate in the
population (N 5 33 females across 17
units, Fig. 3). Second, no females
matured while their fathers were the
only breeding male, even though
many were old enough to do so
(N 5 40). Yet 60% of these females
subsequently matured in the two
months after an unrelated male
arrived (Fig. 4). Taken together, these
data strongly suggest that social con-
ditions can affect the timing of
puberty in geladas; new males appear
to trigger puberty and father-only
groups appear to delay it.

To our knowledge, these are the
only two reports of delayed puberty in
a catarrhine primate in association
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with a social factor. As yet, we have
no data on the sexual maturation of
the reproductive axis relative to the
putative suppression imposed by the
female’s father. Furthermore, because
many catarrhine primates, (e.g. yel-
low baboons),4 have a period of
“adolescent sterility” between puberty
and first reproduction, we do not yet
know whether accelerated or delayed
puberty in a catarrhine necessarily
corresponds to an earlier or later age
at first reproduction.

Reproductive suppression to
Minimize Female Competition

Primate females may also suppress
reproduction to minimize competition
with other females. In some species,
dominants may reduce the fitness of
subordinates by imposing costs (for
example, through harassment) or
reducing the likelihood of success (for
example, through infanticide). Thus,
dominants can create an environment
in which subordinates would do better

to suppress reproduction until compe-
tition becomes less fierce, (e.g. when
food is abundant or when the domi-
nant is not breeding). In some soci-
eties, the predictable nature of social
inequalities between dominants and
subordinates may have selected for
complete or partial ovulatory suppres-
sion in subordinates.49

Infanticide.

Females are known to kill other
females’ offspring across a wide vari-
ety of mammalian taxa.12,50 However,
female infanticide is relatively rare
among primates, having been
reported only in ring-tailed and
brown lemurs,51 yellow baboons,52,53

chimpanzees,54,55 and common mar-
mosets.56 Female infanticide is
hypothesized to result from competi-
tion for scarce resources. That is, by
killing the young of other females, the
perpetrator and her offspring elimi-
nate current and future competitors
for alloparents and/or food.13,50 Such
intense competition among females
has almost certainly had strong selec-
tion on the evolution of reproductive
suppression in subordinates.50

The callitrichid social system may
provide the most extreme example of
social suppression because, generally,
only the dominant female breeds.
Most callitrichid females give birth to
twins, which must be carried continu-
ously for the first few weeks of life.
Soon after, conception occurs again.57

Such high rates of reproductive invest
require that nonbreeding group mem-
bers (“helpers”) aid in rearing the
dominant female’s offspring.57 The
ubiquity of helpers has led some to
suggest that they are mandatory for
successful rearing of twins.58 Competi-
tion for helpers is therefore intense.
Perhaps as a result, among marmosets,
dominant females kill the offspring of
subordinate females59 and among tam-
arins, dominant females evict subordi-
nate females that give birth.60,61 These
actions allow the dominant female to
maintain “reproductive sovereignty.”
As in many cooperatively breeding
mammals, selection appears to have
favored predictable ovulatory sup-
pression in subordinate callitrichid
females, sometimes even in the pres-
ence of an appropriate male mate.39

Figure 4. Shown is the number of female geladas reaching maturation (based on the first
signs of sexual swelling) relative to the timing of their genetic fathers being replaced as
the leader male (N510 females across 20 groups). The dark vertical line represents the
father’s replacement. Only females whose fathers were present are shown. Note that no
females matured while their father was still the dominant male.

Figure 3. Wild female geladas (Theropithecus gelada) exhibit external signs of maturation
(based on the first signs of sexual swelling) disproportionately more often during the
week after a male replacement. Shown are the number of females reaching maturity in
groups where males were replaced relative to the timing of those replacements (N533
females). The zero point on the x-axis indicates the week after a male replacement.
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Harassment

In contrast with the predictable
ovulatory suppression of callitri-
chids, individual females in many
other primate taxa suppress ovula-
tion in a more probabilistic fashion.
Is in callitrichids most of these cases
are associated with high levels of
female competition when resources
are scarce. Females that are persis-
tently harassed may delay reproduc-
tion until a more opportune time.

The most widely cited study of
female social harassment documents
female coalitionary attack behavior in
a wild population of yellow baboons.53

Such attacks were disproportionately
directed toward in reproductive
phases most susceptible to disruption
(i.e., ovulation and early pregnancy).
However, the results of this study have
been criticized, mainly because the
frequency of attacks (rather than indi-
vidual females) was the unit of analy-
sis.63 Other results consistent with the
social suppression hypothesis derive
from studies on captive rhesus maca-
ques,64 wild chacma baboons,65 and
wild geladas.66,67 In each case, ovula-
tory females received the highest rates
of aggression from other females.
However, the study on yellow baboons
was the only one to also record
changes in reproductive parameters
following aggression, with females
receiving the most attacks exhibiting
more cycles to conception and a
higher rate of miscarriage than their
dominant counterparts.68 Moreover, a
follow-up study on captive geladas
confirmed that attacks by dominant
females can indeed directly inhibit
ovulation in subordinates.69

Reproductive suppression to
Counter Infanticide by Males

Male infanticide has been docu-
mented in nearly every major taxon of
primates and is perhaps the most per-
vasive and extreme threat to female
reproductive success.70 Incoming
dominant males kill offspring that are
not their own. When they do, the
mothers of these infants return to a
fertile state, allowing the infanticidal
male to sire offspring much sooner
than if he had to wait for the previous
infants to be weaned. In response to

this threat, females have developed a
variety of counter-strategies.71 Some
of these strategies appear to prevent
infanticide altogether, while other
strategies appear to mitigate the costs
of infanticide.

Prevention strategies typically
involve behavioral tactics by females
that act as either deterrents (for exam-
ple, enlisting the protection of other
males) or manipulations (for example,
obscuring the cues that trigger infanti-
cidal behavior by males). Prevention
strategies per se are not examples of
female reproductive suppression. Mit-
igation strategies, in contrast, cause
vulnerable females to immediately ter-
minate all further investment in their
current infant to allow investment in a
future and presumably more success-
ful infant. Such “loss-cutting” strat-
egies fall squarely within the
framework of the reproductive sup-
pression model. Mitigation strategies
inflict reproductive costs on females
because all previous investment in the
current infant is lost.

Strategies for pregnant females

Pregnancy termination may be one
of the most dramatic mitigation
strategies available to primate
females that encounter the threat of
infanticide during the prepartum
period. If females that maintain their
pregnancies after a new dominant
male enters the group routinely lose
their infants to infanticide, then
selection should weed out this strat-
egy. Alternatively, if females that mis-
carry following the arrival of a new
male are able to quickly and success-
fully reproduce with the new male,
then females with the physiological
ability to terminate pregnancies in
response to a novel male will pre-
dominate until such a trait becomes
relatively fixed in a population. In
support of this scenario, our data
from geladas indicates that terminat-
ing a pregnancy is indeed an adapt-
ive strategy for females whose infants
might be susceptible to infanticide.72

The hypothesis that pregnancy ter-
mination might be adaptive for
females builds on decades of experi-
mental studies of rodents. In 1959,
Hilda Bruce published the first dem-
onstration of what would later be

called a “Bruce effect,” a phenom-
enon in which pregnant females ter-
minated their pregnancies after
exposure to novel males.73 The Bruce
effect was first documented in mice
and later extended to numerous
other rodent species.74 However, all
of these demonstrations were con-
ducted under laboratory conditions,
leading to speculation that the Bruce
effect might simply be a laboratory
artifact.75 However, our recent
research on geladas has since pro-
vided clear evidence of an adaptive
Bruce effect in a wild popuation.72

Using five years of demographic and
hormonal data from geladas living in
the Simien Mountains National Park,
Ethiopia, we found that more than
80% of pregnant females spontane-
ously miscarried when the dominant
male was replaced by another male
(“takeover”). Because nearly half of all
infants fall victim to infanticide after
takeovers,76 the context and high fre-
quency of the Bruce effect in geladas
support its connection to infanticide.
Most surprising, females miscarry the
same day that the new male arrives.
Because of the immediacy of the effect
and because males rarely harass or
attack the females that miscarry, the
Bruce effect in geladas is unlikely to be
mediated by generalized stress.

Anecdotal observations from cap-
tive hamadryas baboons also suggest
that a Bruce effect may be a female
reproductive strategy to mitigate
infanticide. A pregnant female spon-
taneously aborted immediately after
the introduction of a new male, even
though this male exhibited no aggres-
sion towards her.46 In contrast, with
geladas and hamadryas baboons, in
at least two other cases, pregnancy
loss following male takeovers was
directly associated with heightened
aggression and harassment from the
incoming male. For example, in yel-
low baboons, although miscarriages
are rare and infanticide is uncom-
mon,24,77 three abortions were
observed within two weeks of the
immigration of an extremely aggres-
sive adult male.78 Similarly, spontane-
ous abortions following takeovers in
Hanuman langurs were accompanied
by harassment and aggression
directed at pregnant females or their
infants.79 Therefore, we suspect that
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there may be two different mecha-
nisms mediating pregnancy termina-
tion following male takeovers. One is
an adaptive strategy to a highly pre-
dictable threat as, for example, in
geladas and hamadryas; the other is
an outcome of a generalized stress
response to a novel threat as, for
example, in yellow baboons.

Strategies for lactating females

Lactating females may also use
strategies to mitigate the effects of
infanticide. Mothers could abandon
infants that are vulnerable to infanti-
cide, thus reducing the costs of
“wasted” investment and hastening
the resumption of fertility. However,
abandonment is uncommon and it
has only been reported for Hanuman
langurs12 and ursine colobus mon-
keys.80 In contrast to complete aban-
donment, mothers could wean older
infants somewhat earlier than usual
after a takeover. Early weaning might
reduce the infant’s risk of being killed
if it hastens the mother’s return to fer-
tility or prevents males from using
nursing behavior as a cue in their
decision to attack infants. Accelerated
weaning after the arrival of a new
male has been documented in several
primate species, including wild ursine
colobus monkeys,81 wild white-
headed leaf monkeys,82 and captive
vervet monkeys.83 Premature weaning
has also been observed in wild gela-
das, but it is unclear whether this was
associated with an earlier return to
fertility.84 Finally, following the intro-
duction of new males in a captive col-
ony of hamadryas baboons, all six
lactating females resumed fertile sex-
ual cycles within two weeks, regard-
less of the age of their infants,
(suggesting accelerated weaning)
although only the oldest infant
(nearly one year old) survived.46

Thus, the combined data from wild
and captive studies lends support to
the hypothesis that accelerated wean-
ing can be a successful strategy, par-
ticularly for mothers of older infants.

Alternatives to Reproductive
Suppression

Based on the preceding examples,
reproductive suppression can entail

short-term, costs for females, (i.e.,
delay in reproduction, that neverthe-
less reap the long-term benefits of
avoiding harassment or infanticide),
but are there other options? Cer-
tainly, there is ample evidence that
many female primates can use
behavioral strategies in lieu of repro-
ductive suppression, particularly
with respect to infanticide avoid-
ance.71 Although such “prevention”
strategies are beyond the scope of
this review, we do focus on one such
strategy.

Across many primate species,
pregnant and lactating females
exhibit nonconceptive sexual behav-
ior or display external signs of fertil-
ity such as sexual swellings. These
false signals of fertility may manipu-
late or obscure cues that infanticidal
males use to identify their victims.
For example, males may refrain
from killing infants of females they
have mated with in the past. Routine
nonconceptive mating is common in
many primates.71 However,
“conditional” nonconceptive mating
observed after male takeovers has
been reported only for Hanuman
langurs, sifakas, brown capuchins,
and blue monkeys.71 In addition,
among chimpanzees,85 red colobus
monkeys,86 hamadryas baboons,87

and geladas88 such nonconceptive
mating is accompanied by
“deceptive” sexual swellings. Intrigu-
ingly, for hamadryas baboons and
geladas, the infants of lactating
females that produced postpartum
sexual swellings were less likely to be
killed by new males than were the
infants of other females.87,88 How-
ever, false signals do not seem to
provide effective protection to
infants in all cases.71

A PROXIMATE PERSPECTIVE ON
SOCIAL SUPPRESSION; HOW DO

FEMALES SUPPRESS
REPRODUCTION?

Activation of the Stress
Response

Almost 75 years ago, Hans Selye
discovered that reproduction in
female rats could be inhibited
through activation of the (HPA) axis,
the neuroendocrine pathway that

regulates an organism’s short-term
response to stress.89 Although con-
clusive studies from wild primate
populations are rare, experimental
work has documented the negative
effects of stress on reproductive
function in a variety of primate and
other mammalian species.17,90

All vertebrate reproductive activity
is coordinated through the hypo-
thalamic–pituitary–gonadal (HPG)
axis (Box 1). Gonadotropin-releasing
hormone (GnRH) neurons in the
hypothalamus release GnRH into
the median eminence, from which
it is transported through the
hypothalamic-hypophysial portal sys-
tem to the anterior pituitary. There,
GnRH regulates the secretion of the
gonadotropins, follicle-stimulating
hormone (FSH), and luteinizing hor-
mone (LH), which are released into
general circulation, where they act
on the ovary to stimulate ovulation.

Although activation of the stress
axis could potentially influence
reproduction at any level of the HPG
axis, the majority of studies suggests
that the effects of stress downregu-
late the release of GnRH from neu-
rons in the hypothalamus.17

Identifying the precise signals that
relay HPA activity to GnRH neurons
has been challenging, but recent
research points toward corticotropin
releasing factor (CRF) as one likely
candidate.91 Other hormones
released into circulation during
stress, such as glucocorticoids, have
been proposed to mediate stress
effects to the hypothalamic-pituitary
unit.90 Lending support to this idea,
several studies have shown that
administration of glucocorticoids
can, at least in part, inhibit the
secretion of LH from the anterior
pituitary.90 Although the precise sig-
nals that relay the effects of stress to
the HPG axis are not completely
known, they are likely to include
multiple neuroendocrine pathways
that vary depending on the species,
sex, and hormonal or social status of
the subject.17,90

Many mammalian studies show
that early pregnancy can be termi-
nated by stress.92 Under stressful
conditions, the adrenal cortex
secretes substantial quantities of
androgens, which readily metabolize
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Box 1. Reproductive Function and Dysfunction in Female Primates

Reproductive function in female primates. The reproductive cycle of
female primates is controlled by the HPG axis. Release of GnRH from the
hypothalamus into the median eminence and its transport through the
hypothalamic-hypophysial portal system controls the secretion of gonado-
tropins, (FSH, and LH) from the anterior pituitary. (FSH and LH) travel
via systemic circulation to the ovaries, where they stimulate follicle
growth (which secretes estrogens) and eventual ovulation. After ovulation,
the ruptured follicle tissue becomes the corpus luteum, which secretes
progesterone. The HPG-axis is involved in each reproductive stage:
puberty followed by regular ovulatory cycles (ovulation) and finally off-
spring production.

Puberty. The normal process of sexual maturation in most female pri-
mates is tightly linked with growth and energy balance. Female puberty
occurs shortly after a transition in energy allocation: Energy previously
invested in growth is shunted to reproduction. On a physiological level,
the HPG-axis inhibits reproduction in pre-pubertal females at both the
pituitary and gonadal level, keeping reproductive hormones (that is, estra-
diol and progesterone) low. As growth slows, increasing energy reserves
in the peri-pubertal female cause this inhibition to lift, leading to a grad-
ual rise in hormones. The rise in estradiol, in particular, stimulates devel-
opment of the reproductive tract and eventually facilitates functional
menstrual cycles and sexual behavior.

Ovulation. This is the process whereby a mature egg is released from
the female ovary into the oviduct, where it is available to become fertilized.
For successful ovulation, GnRH is released by the hypothalamus in brief
pulses, stimulating the anterior pituitary to release gonadotropins. Gonda-
dotropins cause one or more ovarian follicles to develop. As the follicle
develops, it produces estrogens and progestins. Through a positive feed-
back mechanism, increasing levels of estrogens stimulate more gonadotro-
pins to be released. Ovulation occurs when a spike in the amount of
gondadotropins causes eggs to be released from the developing follicles.

Conception. If females successfully ovulate, the released eggs still need to be fertilized and undergo success-
ful implantation. Thus, conception necessarily involves both a behavioral component (mating with a fertile
male) and a physiological one (successful implantation). Implantation is an early stage of pregnancy at which
the embryo must successfully adhere to the wall of the uterus. This process is highly dependent on progester-
one coming from the corpus luteum.

Gestation. If successful implantation occurs, the embryo proceeds to develop within the protective confines
of the uterus. Gestation begins the moment of implantation and ends with parturition, and is the second most
energetically expensive reproductive phase for mammalian females. The maintenance of gestation is dependent
on threshold levels of progesterone and estrogens. At the beginning of pregnancy, these hormones are secreted
by the ovary; however, once pregnancy is established, the fetal placenta takes over this process. Minute changes
in the concentrations of either steroid can disrupt gestation and lead to pregnancy failure.

Lactation. Parturition is immediately followed by lactation, during which the neonate is dependent on only
maternal milk as a source of nutrition. Lactation is the most energetically expensive reproductive phase for
mammalian females. The ability to sustain the costs of lactation and avoid infant mortality is therefore highly
dependent on maternal body condition. The HPG axis is quiescent during this period, returning to cyclic activ-
ity only when suckling bouts have subsided and maternal energy balance has returned to positive.

Reproductive suppression. This is defined broadly as the inhibition of reproductive physiology and/or repro-
ductive behavior in an otherwise fertile individual in response to specific environmental or physiological condi-
tions. Reproductive suppression generally results from external and internal cues that predict poor reproductive
outcomes. Such cues may come in the form of negative energy balance, in which, energy output exceeds energy
input; physiological stress, or elevated circulating concentrations of glucocorticoids; or either chemosignals or
social signals from conspecifics. These signals are mediated by specialized neuroendocrine mechanisms.
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to estrogens. Consequently, in addi-
tion to glucocorticoids, acute stress
leads to an elevation in estradiol.
Although estradiol is an essential
hormone for preparing the uterus for
pregnancy, even very small eleva-
tions above optimal levels can inter-
fere with blastocyst implantation.93

Elevations in estradiol may also be
an important component of repro-
ductive control outside of physiologi-
cal stress.93

Although most of what we know
about the effects of stress on repro-
duction comes from captive studies
on rodents and domestic animals, a
few primate studies have successfully
connected the dots between a stress-
ful social environment, a neuroendo-
crine stress response, and
reproductive suppression in one form
or other. For example, high rates of
aggression and elevated levels of cor-
tisol in subordinate females were
linked to failure to produce the LH
surge required for ovulation in cap-
tive talapoin monkeys94 and a longer
time to conception in captive gela-
das.69 Further, subordinate female
cynomolgus monkeys experienced
higher rates of aggression, lower rates
of grooming, increased cortisol
responses to an ACTH infusion, and
impaired reproductive function.95,96

These results suggest that many
examples of social suppression in
female primates may be mediated by
a generalized stress response.

Remarkably, physiological stress
does not appear to play a role in cal-
litrichid reproductive suppression.49

Indeed, in cooperatively breeding

societies, subordinate individuals
tend to be characterized by glucocor-
ticoid levels that are equal to or
lower than those of dominants.97 As
a result, it is now accepted that the
extreme reproductive suppression in
cooperatively breeding species is
probably not mediated by social
stress.

Chemosensory or Other Signals

Chemical signals (or chemosignals)
also alter the reproductive physiology
and behavior of conspecifics.
Although this term is often used inter-
changeably with “pheromone,” it is
rare among mammals for a chemosig-
nal to meet the strict criteria for a
pheromone: (which is a unitary,
species-typical substance that is both
necessary and sufficient for an
experience-independent behavioral or
physiological response).98 In contrast,
mammalian chemosignals contain
multiple compounds that interact to
produce a “chemical image” that gen-
erally contains priming or releasing
agents (serving essentially as phero-
mones)99 as well as a chemical signa-
ture used to recognize an animal as
an individual or as a member of a par-
ticular social group.100 Therefore, in
mammals, social information has the
potential to dramatically alter the
effects of particular chemosignals.

Chemosignals in nonprimates

In mammals, chemosignals have
the potential to prime reproductive
physiology so that individuals
become sexually mature and active

at times when reproduction is most
probable and suppress it when it is
not. For example, chemosignals
within the urine of male rodents can
accelerate puberty in juvenile
females (the Vandenbergh effect)101

and stimulate ovulation in anovula-
tory adult females (the Whitten
effect).102 This pro-ovulatory “male
effect” has also been found in anes-
trous domestic sheep and goats.103

The same chemosignals that stimu-
late reproduction in cycling females
may also disrupt gestation in preg-
nant females (the Bruce effect),73

suggesting that each of these effects
may be controlled by the same
mechanism.104 Remarkably, after
females learn the olfactory signature
of a male, (that is, they recognize his
odor) his urine no longer induces
such effects.

Currently, two hypotheses exist for
the “stimulating agent” within male
urine.98 The longstanding hypothesis
is that a combination of volatile
compounds in male urine activates a
neuroendocrine pathway in the vom-
eronasal olfactory system (VNS) of
females and inhibits the prolactin
release necessary for maintaining
pregnancy.99 The alternative hypoth-
esis does not require mediation by
neural events but is instead directly
mediated by estradiol in an unknown
male urine. Exogenous estradiol is
directly absorbed by females and
binds to receptors along the repro-
ductive tract, inducing puberty or
disrupting pregnancy.93 Both
hypotheses support the idea that the
signal is androgen-dependent and
must be bound to nonvolatile

Generally, the common endpoint for all of these mechanisms is disruption of the secretion of GnRH in the
hypothalamus, which curtails all downstream products of the HPG axis.

Reproductive suppression has been documented in females across a wide range of primate taxa and may
involve inhibition at any reproductive stage. Importantly, the costs and benefits of reproductive suppression
change with respect to the stage at which it occurs, with suppression at early stages entailing fewer costs and
more benefits, while suppression at late stages generates higher costs and fewer benefits. Reproductive suppres-
sion can be divided into two “types” based on the cues thought to mediate reproductive inhibition.

Energetic suppression: The inhibition of reproductive physiology in otherwise fertile individuals in response
to inadequate availability of maternal energy.

Social suppression. The inhibition of reproductive physiology or behavior in otherwise fertile individuals
directly in response to their interactions with other conspecifics.
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proteins to facilitate odor individual-
ity.98 The VNS detects and translates
chemical signals in urine that indi-
vidually identify males.105 Impor-
tantly, in most rodents, these urinary
constituents are both necessary and
sufficient for inducing these
effects.106

Urine of group-housed female
mice can delay puberty in juvenile
females (another form of the Van-
denbergh effect)107 and prolong or
completely suppress ovarian cyclicity
in adult females (the Lee-Boot
effect).108 In both cases, the
“delaying agent” in female urine is
adrenal-dependent. Females suppress
ovulation when signals from
conspecifics indicate a high popula-
tion density, suggesting increased
competition for resources.98

Chemosignals in primates

In primates, chemosignals are
used in a variety of contexts.109

However, most of what we know
about the role of chemosignals in
reproductive suppression derives
from research on captive callitri-
chids. It has become clear that che-
mosignals in the scent secretions of
a dominant female play a key role in
both initiating and maintaining
reproductive inhibition in subordi-
nate marmosets and tamar-
ins.41,110,111 (Additionally at least
one study on cotton-top tamarins
suggests that related males can have
the same suppressive effect.112) For
example, common marmoset
females rendered anosmic (unable to
detect chemosignals) were able to
avoid ovulatory suppression after
exposure to a dominant female.113

Furthermore, anovulatory marmoset
and tamarin females kept only
within scent contact of the dominant
female exhibited a significant delay
in the onset of ovulation.41,110,111

However, despite a delay in ovula-
tion, the effectiveness of the odor
cues alone expired after a few
weeks,114 indicating that chemosig-
nals from the dominant female are
not sufficient for maintaining ovula-
tory suppression. Supporting this
argument, odor from an unfamiliar
dominant female was completely

ineffective at maintaining ovulatory
suppression, suggesting that chemi-
cal signals from dominants are effec-
tive only if they are paired with
recognition of the signaler.115 In this
regard, reproductive control by dom-
inants may be mediated simply
through the learned association by
subordinates between the dominant
female’s cues and the behavioral sub-
ordination she imposes.116

In addition, scent secretions from
dominant females are not necessary
for maintaining ovulatory suppres-
sion in callitrichids. In another ver-
sion of the experiment above,
subordinate marmoset females ren-
dered anosmic remained anovulatory
as long as they were housed with a
known dominant female.114 Further-
more, even after physical separation
from the dominant female, her visual
cues alone were enough to maintain
anovulation in anosmic subordi-
nates.114 Yet neither visual nor
chemical signals were able to main-
tain suppression indefinitely, indicat-
ing that social cues from the
dominant female may be the pre-
dominant stimulus controlling ovula-
tory suppression.49

The role that novel males (or their
chemosignals) might have in stimu-
lating ovulation in callitrichid females
is less straightforward. First, whether
males themselves are even necessary
for stimulating ovulation is variable
across species, with only cotton-top
tamarins requiring both the removal
of the dominant female and the intro-
duction of a novel male.40,41 Second,
in cotton-top tamarins, males were
required for initiating ovulation in
previously acyclic females, but were
not required for maintaining.117

Finally, male chemosignals alone
were not sufficient for stimulating
ovulation in anovulatory female tam-
arins,112 although combining these
chemosignals with visual and audi-
tory cues did stimulate cyclicity.117

To our knowledge, no study has
examined whether male chemosig-
nals are necessary for ovulatory
stimulation.

We know even less about the spe-
cific neuroendocrine mechanisms
involved. Anovulatory, mature,
female callitrichids dwelling in their
natal groups exhibit acyclic levels of

gonadotropins and ovarian hor-
mones.49,111,118 Further, at the first
signs of subordination, previously
cycling females exhibit a sudden
drop in gonadotropins, followed
shortly afterward by complete ovula-
tory suppression.45,119 Although the
precise mechanism for this is
unknown, it has been suggested, in
common marmosets, that social sub-
ordination causes a dissociation
between GnRH and pituitary secre-
tion of gonadotropins, possibly via
reduced pituitary sensitivity to
GnRH.116

In catarrhine primates, we under-
stand almost nothing of the proxi-
mate mechanisms stimulating
changes in female reproductive con-
dition in response to social cues. In
addition to a Bruce effect and a possi-
ble Vandenbergh effect in female
geladas, we also see signs of false fer-
tility in lactating females after new
males enter the group. (Intriguingly,
all three have also been reported for
hamadryas baboons.)46,87 None of
these is consistent with a stress-
mediated mechanism. In both gelada
and hamadryas studies, new males
did not appear to harass, intimidate,
or injure females on takeover,76 and
the speed with which pregnant
females terminated their pregnancies
does not suggest the outcome of
stress-induced inhibition of the HPG
axis. Instead, it resembles the
chemosensory-mediated Bruce and
Vandenbergh effects in rodents. How-
ever, the VNS in catarrhine primates
has become vestigial, indicating a
diminished role for olfaction and che-
mosignals.99 Without a functional
VNS, catarrhines presumably lack the
ability to detect non-volatile chemo-
sensory compounds. So how are these
effects mediated?

At present, several possibilities
may explain the reproductive
changes observed in female geladas
and hamadryas baboons following
takeovers. First, although unlikely,
male chemosignals could be trans-
mitted to females via the main olfac-
tory system, dermal contact, or
semen. Second, as in callitrichids,
the trigger for reproductive suppres-
sion could come from visual, tactile,
or other social cues. These cues
alone or in combination with
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chemosignals could stimulate neuro-
endocrine activity within the female,
causing prolactin inhibition and/or a
rise in estradiol, both of which can
significantly effect a developing
fetus. Regardless of the mechanism,
it is possible that the same neuroen-
docrine pathway controls all three
different reproductive responses to
novel males. Understanding the
details of this pathway is therefore
crucial for determining how such
responses have been shaped by
evolution.

CONCLUSIONS

Throughout this review, we have
taken the stance that reproductive
suppression is an evolved strategy
mediated by females. Females trans-
late predictable and reliable signals
into a “decision” to continue or
abandon reproduction at a mecha-
nistic level. But to what extent is this
assumption justified? In other words,
could reproductive suppression sim-
ply be the outcome of physiological
constraints in the same way that
genetic abnormalities may cause a
pregnancy to fail?

Reproduction can fail in one of
two ways: indirectly, as the outcome
of an evolved mechanism that
responds appropriately to a proxi-
mate cue indicating suboptimal con-
ditions, (as has been suggested for
social suppression), or directly, as the
outcome of a mechanism that
responds to the suboptimal condi-
tions themselves, (as has been sug-
gested for energetic suppression).
For example, high rates of aggres-
sion inflicted by one unusually
aggressive yellow baboon male in
Amboseli78 almost certainly caused
the subsequent abortions observed in
several females, perhaps as a result
of hemorrhage or stress. One could
argue that an acute stress response
by these females acts the same way
that injury, disease, or pathology
does to cause reproductive failure (a
non-adaptive response). Alterna-
tively, one could argue that females
have evolved to suppress reproduc-
tion in response to high levels of
generalized stress, regardless of the
nature of this stress. Both of these
arguments stand in contrast to the

data emerging from geladas, where
systematic abortions following take-
overs appear to be the rule rather
than the exception. So how do we
distinguish adaptive reproductive
suppression from more general mal-
adaptive reproductive failure?

We suggest three ways to resolving
this. First, we place reproductive fail-
ures along a continuum that ranges
from adaptive strategies at one end
(for example, a Bruce effect in gela-
das) to non-adaptive outcomes at the
other (for example a, infant death by
disease). The adaptive end requires
reliable and predictable cues; the
non-adaptive end is imposed by
purely stochastic events. Stress-
mediated reproductive failure falls in
the middle of this continuum, where
the generalized stress response is
adaptive, but the events triggering
the response are stochastic.

Second, we emphasize the impor-
tance of identifying the proximate
cues associated with the immanent
failure. If the proximate cue, (such
as the arrival of a new male) is not
also the mechanism for reproductive
failure, this is more likely to be
evolved reproductive strategy than if
the cue is intricately tied to the
mechanism itself (such as negative
energy balance then this more
likely).

Third, we encourage research that
merges mechanism and function to
test adaptive hypotheses. For exam-
ple, we know a great deal about the
mechanisms mediating reproductive
suppression in callitrichids, but we
know much less about their adaptive
significance. Why do most subordi-
nate callitrichid females completely
suppress their own reproduction?
What is the likelihood that they will
eventually become the dominant
breeding female? Or is their advant-
age solely one of kin selection? In con-
trast, in catarrhines we are beginning
to understand of why some forms of
reproductive suppression are adapt-
ive, but we have little to no data on
the mechanisms mediating these
strategies. It is paramount that pri-
mate biologists integrate both func-
tional and mechanistic approaches
for us to fully understand the why
and how behind reproductive sup-
pression in female primates.
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