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I ntroduction

Fertility has experienced long-term declines in yndaveloped countries, but recent
studies have noted small increases in some paHEsrope, North America, and Asia
(Goldstein, Sobotka and Jasilioniene 2009; Luci &@nelvenon 2010; Myrskyla, Kohler and
Billari 2009; Sobotka 2008; Myrskyld, Goldstein abden 2013). The future size and age
structure of national populations depend largelyoth rates, so governments and planners are
naturally interested in knowing whether fertilitgaine is slowing or reversing.

Answering that question with current data is cocgikd. Statistical agencies estimate
the most common fertility index — thetal fertility rate (TFR) — by aggregating the age-specific
fertility rates of a calendar year. Thus a TFR sagl1.16 children per woman (for the Czech
Republic in 1998) does not correspond to averdggnlie childbearing by any real women, but
rather to a fictitious group who experience 1998-agecific rates over their reproductive
lifetimes. This kind of period measure is vulneeatd what demographers ctdimpo distortion
In particular, an increase in TFR does not necédgsaean that women are beginning to have
larger families. It could instead mean that posgmoent of fertility to higher maternal ages is
slowing (Bongaarts and Feeney 1998; Van Imhofflkeidiman 2000; Kohler and Philipov 2001,
Zeng and Land 2002; Goldstein et al. 2009).

Simply put, standard fertility indices derived fraurrent annual birth and population
information cannot tell us the future. Estimatthg final fertility ofcohorts(i.e., real groups of
women, such as those born in 1970, 1980, or 1¥¥f))ires either waiting for those women to
reach the end of reproductive ages, or making &stsc The waiting strategy has produced a few

recent examples of increased cohort fertility imi@tinavia (Andersson et al. 2009), but in most
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countries the cohorts of women whose lifetime liggtmight be increasing are still young, and
their final fertility levels depend on future rat@sejka and Calot 2001).

Our objective in this paper is to produce usefuébéasts of completed cohort fertility for
women born in the 1970s and 1980s, by using a awatibn of new methods and a large new
fertility database. Figure 1 shows an example fsiog problem, using data from the Czech
Republic. Precise rate estimates are available for Czechandy single years of age for
calendar years through 2009 from the Human Fgrillatabase (HFD 2011, described in detail
later). This yields complete rate histories ovggsa15-44 for women born 1956-1965, and
partial histories for cohorts of women born aft863. The data indicate a radical change in
Czech fertility patterns in the post-Communist 8ii@e top edge of the figure contains values for
thecohort total fertility rate(CFR), which is the average number of childrerr é&gen to women
with a particular birth year. The previous Czectigra of early births and replacement-level
cohort fertility (CFR:2.1) has given way to later births and a still-umkn level of completed
fertility. The central question that a forecast traddress is whether women in the later cohorts
are reducing fertility, or merely postponing it.efleame question arises in other developed

countries.

! In our data the Czech Republic and Slovakia gpars¢ed, even for the period during which they viitically
united.
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Figure 1. Czech Republic HFD (2011) fertility estitess by cohort year of birth and single year of &grewomen born after
1955. Darker cells indicate higher rates. Cellwaupper right, such as (born in 1980, age 40) oacur in the future. Cohort
fertility rates (CFR) appear above the plot, arelincomplete for cohorts born after 1965.

Demographic Forecasting

Recent changes in fertility levels and timing make forecasting question especially
timely, but of course the basic problem is not newdemography. There is a growing literature
in forecasting mortality, much of it derived froneé. and Carter’s (1992) singular value
decomposition approach for period mortality forés#s.g., Renshaw and Haberman 2006;
Booth and Tickle 2008; Girosi and King 2008; Hyndan@and Booth 2008). Girosi and King's
(2008) recent proposals for Bayesian models in alitrtforecasting are especially important:

they are a main inspiration for the cohort fertilhodels that we develop in this paper.
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Fertility forecasting is a far more difficult prigion. Unlike death, childbearing is both
optional and repeatable. Its timing is stronglyeeaféd by conscious decisions. In addition,
mortality rates change predictably in one direcoerr time, while fertility rates fluctuate.
Despite these difficulties, there is a sophistiddiierature, parallel to that for mortality, on
forecasting period fertility rates and the compléfertility of cohorts (Bloom 1982; de Beer
1985; Thompson et al. 1989; Chen and Morgan 196&;1993; Li and Wu 2003; Goldstein
2008; Hyndman and Booth 2008; Chen 2010; Chend-and010; Alkema et al. 2011,
Myrskyld, Goldstein and Chen 2013). Booth (200@@rs an excellent overview and history of
demographic forecasting in general, including @ussion of approaches to cohort fertility
completion.

Models for cohort fertility forecasts can extrafgelaver time, over ages, or both. In
Figure 1, a time series approach would extrap@eatdable age-specific rates from West to
East, while a cohort approach would fit modelsatador incomplete cohorts and extrapolate
from South to North over ages. A principal challerigr any model is to produce coherent
forecasts, in which both time trends and cohoredales are demographically plausible. In
particular, it is essential to use recent trena@stigularly on postponement to higher maternal
ages) in a way that avoids forecasts with demogcafiyr implausible age patterns for cohorts.

Another important forecasting challenge is the eabn of uncertainty. Deterministic
models that employ simple cohort extrapolationparametric trajectories for future age-specific
rates do not come with straightforward and welleleped methods for evaluating forecast
uncertainty.

In this paper we extrapolate over both time and egmbining what demographers

already know about plausible age patterns of figrivith recent trends in age-specific rates. We
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build a Bayesian model for surfaces such as thoségure 1, with priors constructed from a
large archive of historical fertility data. As @debed in the next sections, our model uses
improper normal priors and a normal likelihood tisat calculation of posterior maxima and
posterior uncertainty is straightforward.

Our approach uses available information withoutasipg rigid models or making strong
assumptions about the object of the forecast. ©al ig to use Bayesian methods with priors
that explicitly incorporate some of the knowledbattis implicitly used by existing forecasts
methods. We expect that such methods may findrositapromises between recent trends in
observed data and known age, period, and cohdititjgpatterns. In developing this model, our
main tasks are to define qualitative priors thatude existing demographic knowledge about
fertility patterns over age-time Lexis surfacesgévise appropriate mathematical specifications

for those priors, and to design appropriate contjmutal methods.

Human Fertility Database and Supplemental Data Sour ces

We base our analysis on a new public dataset, timad Fertility Database (HFD 2011).
The HFD is a cooperative project of the Max Plamskitute for Demographic Research and the
Vienna Institute of Demography. We downloaded d@ataprising 44400 estimated fertility rates
for 24 countries or regions in Europe and North Aoge categorized by single-year of age
(12,13,...,55) and single calendar year of data ctitie, over periods of up to 120 years ending

near 2009. HFD (2011) protocols carefully allocate theseadatwomen by their year of birth.

2 Our HFD period data are for Austria 1951-2008 IgBtia 1947-2009, Canada 1921-2007, Switzerland
1932-2007, Czech Republic 1950-2009, Germany [Edsst, combined] 1956-2010, Estonia 1959-2009 gl
1939-2009, France 1946-2009, UK [N.Ireland 19742 &rotland 1945-2009, England &Wales 1938-2009,
combined 1974-2009)], Hungary 1950-2009, Lithudrd&9-2009, Netherlands 1950-2009, Portugal 194®200
Russia 1959-2009, Slovakia 1950-2009, Slovenia 2981, Sweden 1891-2010, USA 1933-2007.
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We combined HFD data with period rates collected/lyyskyla and colleagues for 12
additional countries (Australia, Belgium, DenmaBtgece, Iceland, Italy, Japan, Korea,
Luxembourg, New Zealand, Romania, and Singap@t sburces are listed in Myrskyla et al.
2013, Table 1), and also with period rates for BrE266-2010 provided by Dr. Everton Lima
(personal communication). This produced a findaad#t covering 37 countries, which is
heavily European but also includes data from N@rtkerica, South America, Asia, and Oceania.

In this data set, we call the vector of rates foohort at ages 15-44 itehort fertility
scheduleand define a schedule @smpletaf rate estimates are available at all 30 agesa\s
example, in Figure 1 the schedule for Czech wonmen Im 1960 is complete, while the schedule
for women born in 1980 is not. We have data frord3@ohort schedules, of which 1015 are
complete. The earliest complete schedule is fordshevomen born in 1876; the latest are for
women born in the mid-1960s in each country.

We separate our data into two non-overlapping sabse

» Contemporarydata for forecasting exercises over surfaces asdfigure 1.

» Historical data, for use as a sourceaopriori information. Historical data
comprise all complete fertility histories for cot®born earlier than those
appearing in any forecast surface.

The historical data set contaifs469 complete cohort schedules for women born yncaantry
between 1900 and 1949Ve organize the historical dataset as a 30x468xrtat ST, with each
column containing one complete historical sched@entemporary data for each country (such
as that for the Czech Republic in Figure 1) conepfestility schedules, both complete and

incomplete, for all women born after 1949.

% Only Swedish data are available for cohorts bafiote 1906. Choosing 1900 as a lower bound enshaégriors
come from a more equally weighted mix of countrieise upper bound of 1949 ensures that, as in Fiune have
enough complete cohorts to observe pre-forecasti$rin rates by age.
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The HFD represents an unprecedented collectionledrent and comparable fertility
data. Combining the HFD with supplemental datatesea contemporary data set that is an
excellent testbed for comparative forecasts. feuntlore, the historical portion of the data set is
an ideal source d@ priori information on the nature of cohort fertility sclues and their
changes over time. The use of a large collectidmsibrical data to inform and construct
improper priors about age and time patterns of ddkdility is one of the main novelties in our

forecasting exercise.

Notation, Model, and M ethods
For contemporary data in a country, we h@Jarth cohorts of interest€1...C) overA

reproductive ages€l...A). For this country, define (with all vectors asurons):

. 6., O R, the true fertility rate for cohodbetween exact agesanda+1

. 6.=(6,...6,,) O R", thefertility schedulefor cohortc,

. 0,=(6,...6-,) O R", thetime seriesf rates at age,

. 8=(6 ---6.) OR™, the vector ofll rates sorted by age within cohort,

. G.=[0...1,...0] OR™® a matrix such thaf, = G_6

c

. H,=1c00...1..0) 0 R““*| a matrix such tha@, = H_ &

. CFR =(@...) 6, UR, thecompleted fertilityof cohortc

. y O R", a vector of published estimates for some sulfsét o

. VIOR"™“, a matrix of ones and zeroes such & OR" is the subset of parameters

corresponding ty
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In the forecasting problemy,is a set of external estimates of past fertilgies, provided by a

national statistical agency. As in Figure 1, @ grid 6 (also called aate surfaceor a Lexis

surfacg is a larger set that not only includes those tsts, but also extends into the future.
We model parametefsand observationgin a Bayesian framework

(1) InP(8ly) = const+ InL(y|&) + In f(6)

where P() , L(), andf() represent, respectively, the posterior denshig likelihood function,

and the prior densityConstis a term that does not vary wihFertility rates published by

national statistical agencies typically come froemwlarge risk populations. This justifies a

normal approximation for the likelihood,
(2) InL(y|8)=const-1(y-V@) ¥* (y-Vé)

where¥ = diag[ y, (1- y;)/ W | andW is the number od-year-old women in thec(a) cell
i=1.n

corresponding to thieth rate. In most cas&¥ values are very large, so that sampling variances
are near zero and estimagesre almost always extremely close to the trudifgntates in the
pre-forecast period.

As we describe in detail below, we use a log pademsity of the form
3) In f(8)=const-18 K@
where the constants @A x CA matrixK are estimated from patterns in historical data. In
combination with the normal likelihood function (2his prior implies, conditional oK, a

multivariate normal posterior fé{y, with CAx1 mean vector
(4) foos = [V ¥V 4K [* [viwty ]
andCAxCA covariance matrix

5) = VetV HK]T
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The posterior distribution over each country’s lsegurface,
(6) (9 | ycountry)~ N(:upost’ Zpost) ’

serves as a probabilistic forecast for its futuge-apecific fertility rates. Because

CFR =(@..) 8. =1G_@is alinear function of , the posterior distribution also provides a

probabilistic forecast for our primary measurerdérest, completed cohort fertility.

The critical part of this model is the very largenplty matrixK that specifies the
improper prior. Our basic approach, similar to tinaGirosi and King (2008) or Wood (2000), is
to buildK from the bottom up, by additively combining manypsenalties that apply to the
individual cohort schedules and to the time seavidsgrtility rates at each age. The process of
repeated penalties builds a scaffolding for a plytcomplete rate surface like that in Figure 1,
with vertical (cohort) and horizontal (time-serié&€ams that extend from the past into the future.

We construct these sub-penalties by combining deaptgc knowledge with empirical
patterns in historical fertility data. In particulave assign lowea priori probabilities to
historically implausibléd surfaces that have (1) age patterns in cohortifiegcheduled;... 6¢
that are unlike those in the historical data [sadort penalties and (2) patterns in time series of
age-specific rate@;s... 044 that are unlike corresponding series in the hisabdata fime series

penaltie$. Details are in the next subsections.

Cohort Penalties
In all of the examples and calculations for thipgrawe deal with rate surfaces over
exactlyA=30 ages (15...44) an@d=40 cohorts (women born in 1956...1995), and we will

assume those values from this point forward. Fohe&ahort schedulé. we define historically
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unlikely age patterns via the singular value decositpn (SVD) of the historical data array,
HIST=UDV". Call X the30x3 matrix constructed from the mutually orthogobatolumns
corresponding to the three largest singular vailu&s Figure 2 shows these threcolumns,
which have clear demographic interpretations. WWsigin components 1-3 affect the overall
cohort fertility level, the mean age of childbeagyiand the variance of childbearing ages,
respectively. Increases in component 2 correspoffiertility postponement, with rates

decreasing before age 25 and increasing at higjes: a

Figure 2. First three principal componedtsfrom the singular value decomposition of histakicohort schedules. These three
components account for > 95% of deviations of histb rates from their age-specific means.

Any cohort schedulé; can be decomposed into a part lying in the colgpacte oX and an
orthogonal remainder:

7) 0, = XB. +e =X (XX)'X'6, +&,

where the remainder vector is

8) e.= |1,-x(xX)'x" |6 =M4,

BecauseX contains schedule components with large singwdares, remainder vectors should

typically be small. We can define “small” by constting residual vectors for all complete

cohort schedules in the historical artayST, and calculating their average outer product:
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(9) Q= §)es,

These historical data allow us to establish a sqedaalty for the “badness” of each cohort

schedule’s shape

£ Qe

e [mam]g
-g[c.MaMG,e
-gK, 0

1T,

C

(10)

where the + superscript represents the Moore-Pemasudo-inverse (Penrose 1955), necessary
because rank{)=A-3=27. By construction, the empirical averagergfcross the cohort
schedules i1 ST equals27.

In our forecasting problem we deal with surfaciés that in Figure 1, for which we have
precise rate estimates at every age for the firstahorts 1956...1965. We therefore use the
shape penalties for cohorts with at least some ankirates, namely for the 30 cohorts born in
1966...1995.

An important feature of this cohort shape penaltis that it is improper, in the sense that
an uncountably infinite number of fertility schedsilcorrespond to any given level of the
penalty. To take the simplest example, the mininmemaltyz.=0 occurs fomany schedule that is
an exact linear combination ®fcolumns, regardless of the specific weights orctiiemns. In
other words, by applying this penalty we assuma poori knowledge of the specific shapes or
levels of cohort fertility schedules. We assumeydhat, in the cohort dimension, a surféicean

be well-approximated by the same components ttsdtdmporoximate historical schedules. An
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important benefit of this approach is that a ratdase could have cohort schedules with shapes
and levels not seen in the historical data, withmavy penaltie$.

Figure 3 illustrates the shape penalty. It cont#esobserved cohort schedule for USA
1942-born women from the HFD (dark solid line), grejection of that schedule onto the
column space of SVD componemtqsolid squares), and the residuathat cannot be explained
via theX components (thick grey line along horizontal axiafter calculating the overall
covariance matrix of shape residuals as in equé8prthe calculated penalty for this observed
schedule is=27.07. This penalty is very close to the empireatrage of 27, so that the size
and pattern of the USA 1942 residuals are in s@nsestypical of historical data. The most
interesting feature in Figure 3 are the three dadines, which represent other hypothetical
schedules with identical penaltigs=27.07. By design, our improper cohort shape pgrealhnot

distinguish any of these four very different agégras as more or less likely than any other.

030

4 N e USA 1942 OBS

025
~
-

/ N L] SVD Projection

\ SVD Residual

020

P YRS _ _ __ OtherSchedules with
Identical Penalty

0.15

0.10

005

000

Figure 3. Observed cohort fertility schedule for W&men born in 1942 (solid dark line), and bestrapimation of that
schedule using the 3 SVD components in Figure & (siguares). The approximation residuals, represely a thick grey line,
generate a shape penalty of 27.07. Dashed linesseqt hypothetical schedules with identical vafoeshape penalty.

* Because there are no priors on the component iggiglthree-component approach is flexible enoagtilow
many shapes that are not well represented in #terfual data. Perhaps most importantly, our meadaes not
heavily penalize the bimodal age patterns that beagmerging in English-speaking countries (Sullig@n5).
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Time Series Penalties

Our second set of penalties concerns change abifitgtan the time series of rates at
each age. Current demographic forecasting model$ns main methods for extrapolating
observed fertility rates into the future, which wal call the freeze-rateandfreeze-slope
approaches. The freeze-rate method assumes thaotdikely future value for the fertility rate
at agea is simply the last observed rate at that age.fideze-slope method assumes that trends,
measured as fitted slopes over some recent pevibaontinue into the future. In terms of

residuals, these two methods suggest that

6,.=0

a,c

Freeze-Rate: 6, ,,— 6,
Freeze-Slope: 4, ., — l@a’C + 3(9“ ,...,Hac_n) =0

where ,@ ()is a slope estimator based on the recent historgte$ at aga. As with the shape

residuals in the previous subsection, one can ngigtenalties for a given rate surface, based

on standardized residuals from rules of this typke larger these time series residuals are, the

less plausible is the rate surfdca priori.

There is wisdom in both of the standard forecastimgroaches: age-specific rates do
trend steadily upward or downward over periodsw# br ten years (favorinfjeeze-slopg but
biological constraints and the impossibility of aéige rates also mean that such trends cannot
continue indefinitely (favorindreeze-ratg In a Bayesian framework a researcher does na ha
to make an explicit choice between these competiodels. Because the models are not
mutually exclusive (a sequence of rates can be ¢mtktant and smooth) we can incorporate

both probabilistically, and then calibrate the esrappropriately.

At each age, we define a vector of 30 freeze-rg&uals for cohorts 1966...1995:
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O - -1 1 0 0
6, 1966~ Ga 1065 O - 0 -1 1 0

(11) wu,= : = .o |6 = Wrb = WeH, O
9&11995_0611994 0 0 O —1 1

and a similar vector of 30 freeze-slope residuals

Ha 1966 l@a 1065 T ﬁ(ea 1965""653 1961)]
(12) vV, = : = Wq Ha = W.H
6a 1995 [Ha 1004 T ﬁ(ea 1994’---6:3 1990)]

For the freeze-slope case we estimate a localssigreslope from the modéd, . -6, . )=4n,
by least squares fitting over a five-year periothge=0...4. This produces slope estimates
B= 390, 550017550002~ 55 05cs — 35 6ncs @nd freeze-slope residuals that are weighted

= —40 1 2 3 4
sums offs, such asa 1966= (Ha 1966 30 Ha 1965 T 36 6a 1964 T 35 Ha 10631 36 6a 19627 30 6a 1961) for the

1966-born cohort. These more compfleweights appear in the appropriate cells of\the

matrix.

0.21
1

Freeze Slope
v=.0031

0.20
1

=~ "0 Freeze Rate
u=.0083

25
0.18
1

0.18
1

017
1

0.16
1

T T T
1930 1932 1934 1936 1938

Cohort Year of Birth

Figure 4. Freeze-rate residuals (u) and Freezeeskegiduals (v) at age 25, for 1936-born womeménNetherlands.
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Figure 4 shows a simple example: freeze-rate aetké-slope residuals at age 25, for women in
the Netherlands who were born in 1936. In thisipalar example both residuals are small, as
they typically are in the historical data, givele 8moothness and short-term predictability of
rates at any given age across adjacent cohortth rBsiduals are positive because the two
models underpredict the observed rate. In thisiBpease the freeze-slope residual is smaller in
magnitude, but one can see that for other cohergs 1938) the freeze-rate residual is smaller.
Figure 4 illustrates residual calculation at agddtm single cohort; eaaly, andv, vector contain
30 such residuals, for cohorts 1966-1995.

We calibrated the time series penalties by estngatll freeze-rate and freeze-slope
residuals at each age in the historical data. Te@mnesiduals of both methods are near zero at

all ages, so that the average squared residuadsbdr (age, method) combination serve as
estimates of residual variance — call these ema;tiejstimatesia and Si,- As we did for shape
residuals, we standardize before constructing piesallhe freeze-rate penalty at agerefore
equals

ﬂRa = SI;i u:a ua
(13) =6 [s2 H,WW H,] 6
=g K, 0

and the analogous freeze-slope penalty is

ﬂSa = S;i \/ava
(14) = ¢ [s2 HL WowgH, ] 6
—9K,0

It is useful to contrast these penalties with comrBayesian priors for smoothness over
age and time (e.g., Breslow and Clayton 1993; Beraund Clayton 1994; Ogata et al. 2000;

Bray 2002; Schmid and Held 2004; Girosi and Kin@&0 In general, smoothness priors assign
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high probabilities to series with slowly changidgpes. The most common model in the
literature (calledRW2by Schmid and Held 2004) assumes that seconddliites in a series
follow a random walk with small, independent pepatrons. RW2is therefore equivalent to a
freeze-slope model in which each time series vialyeedicted with error from the two

preceding values (Breslow and Clayton 1993:17-Ez&ini and Clayton 1994:Fig. 3). When
examining the historical data, we found tR&/2models that were appropriately smooth (i.e.,
with expected one-year-ahead prediction residuaddas to our historical data) were also too
volatile (expected five- or ten-year-ahead diffeeswere much larger than the corresponding
historical averages). As a consequence, we adoipeecariant described above: we use five,
rather than two, years of earlier data to estirttegeexpected slope, and we also add freeze-rate

penalties in order to identify less-volatile ser@ssmore plausible priori.

Weighting Multiple Shape and Time Penalties inRhier Distribution

The complex matrix notation in the previous subsadends to obscure a relatively
simple structure, so it is useful to pause and rebe that there are three basic categories of
priori information, and that each penalty term has b&erdardized using empirical variance
information from pre-1950 cohorts. By using tm&rmation to construct a prior distribution
for 6, we implicitly assume that general features ot pat® surfaces (measured in terms of the
frequencies of different values for shape and er@es penalties) will persist into the future in
the countries for which we will forecast age-speaiates and CFRs.

Table 1 summarizes the logic and the notationwleahave developed so far regarding

penalties over a 30x40 surface of fertility ratessdges 15...44 and cohorts 1956...1995.
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Table 1. Summary of Sub-Penaltiesfor 30x40 Rate Surfaces

Time-Series Time-Series
Schedule Shapes | (Freeze Rate) (Freeze Sope)
# of Penalties 30 30 30
Penalty Terms 1966 -+ - 199t TR,15--- TR, 4¢ Ts,15-.- TS 4«
Residuals g =M 0, U, =Wg0, Vy,=Ws0,
Penalty Matrices K19 ... Kigge KR'15... KR'4z KS,15--- KS’41

A Priori Assumption

Schedules well
approximated by
SVD basis
functionsX

Next cohort’s rate at
agea well predicted by
current rate

Next cohort’s rate at age
a well predicted by recen
trend

—

Calibration
Information from
Historical Data

Projection errors
from X

One-ahead freeze-rate
prediction errors

One-ahead freeze-slope
prediction errors

# of elements in each

residual 30 30 30
Expected value of

each penalty (=rank

of M or W) 27 30 30

Our prior distribution additively combines all 90tbe penalty terms in its log likelihood, using

a set of weights to adjust the contribution of epehaltyj=1...90.

Inf(8,w) =const -3

(15)

ZWJ 71;
J

=const-16 [ZW]-K jJH

i
=const-16 Ké@
Non-unit weights are necessary because the residnalhich we base the penalties are not
mutually independent — merely as an example, ibcoshape residuals for a surface are all very
small, then large time series residuals may belilksly. We demonstrate in the Appendix that
for a weighted prior distribution, the expectedueabf the th penalty given v} is
(16) E*(]T]- |W) = trace(KjK*)
whereE* is a special operator for the expectation wheés restricted to the column spacekof

(see Girosi and King 2008), aid is the generalized Moore-Penrose inverse of thighted

sumK.
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Our strategy for selecting weights to match histrdata is as follows. By construction,
we know the empirical average for each penalty terthe historical data: 27 for cohort shape

penalties and 30 for time series penalties. Ougailye is to find weightss;...wg such that
a7) E. (nj |W) = trace(K j K+) =target for j=1.90
wheretarget represents the historical average for the penalty.

In practice, the following elementary search pragedonverged quickly to good solutions:

0. Initialize all weights at unity: yw=w,=...=Wg=1

1. CalculateK = ij K, and its generalized inverse’
2. Calculate E. (7T]- lw)= trace(K j K*) forall j =1.90

DE (”j |W)

3. Update weights asv™" = w; " "
arget;

]

j=1.90
4. Stop if converged; otherwise return to step 1
Table 2 summarizes the results of the joint werghprocedure, showing the range of
weights and expected values of the penalties befodeafter 30 iterations. These weights

produce & matrix for a prior distribution for which thee priori expected values of each penalty

match the historical average very closely.

Table 2. Iterative Penalty Weighting

Time-Series Time-Series
Schedule Shapes (Freeze Rate) (Freeze Sope)

Target value E* (m|w) 27 30 30
Range of w

Before Iteration 1 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000

After Iteration 30 0.644 — 0.886 0.069 — 0.535 0.338 - 0.600
Range of E*(m|w)

Before Iteration 1 5.611 — 15.304 5.611 — 15.304 10.238 — 14.913

After Iteration 30 27.000 - 27.000 29.997 — 30.000 30.000 - 30.001



Bayesian Forecasting of Cohort Fertility 19

Joint calibration produces the model that we usédiecasting, via the conditional

posterior normal described in Equation (6):

vty +k |[F [viety]
[viwrv +k ™

lupost
2

(18 @|y~N

post
whereK is the weighted sum from Equation (15) using thetjy calibrated weights.
Themaximum a posterioiMAP) estimator of true ratesis theCAx1 mean vectofiess
and theCAXCA matrix Z,0st quantifies posterior uncertainty. Theelements o6 that occur
before the forecast date will have very low postevariances, because we have precise HFD
estimates for those rates from national statisagaihcies. The remainif@A-n elements

comprise the forecast.

Improper Priors and CFR Forecasts

We emphasize two important points about the hisadigi-calibrated prior distribution.
First, it captures features of fertility surfachattare remarkably robust to changes in the
historical data from which it is constructed. Imstructing and calibrating priors, we
experimented with many subsets of the HFD, usiffgr@int periods and different subsets of
countries. In all cases the principal componen&igure 2, and the empirical error patterns in
time series residuals, were quite similar. Thisststency of results increases our confidence that
the specific prior distribution that we have deyald from the historical data truly captures
robust qualitative patterns of fertility surfaces.

Second, the prior is completely uninformative abathgolute fertility levels. The
improper shape priors introduce information onlg@ithe relative levels of cohort fertility at

different ages. Similarly, improper time seriepsiintroduce information only about short-term
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smoothness and stability of rates. For all butyinengest women (for whom we have little or no
fertility history at the time of the forecast), CFétecasts come mainly from the data, not fram

priori assumptions.

Coverage Validation & Comparisonswith Alternative Models

As in any forecasting problem, it is important taderstand the degree to which our
model adequately estimates forecast uncertaintyrdar to test coverage performance, we
withheld post-1985 period data and simulated theclsts that would have been produced in
calendar year 1985.

An ideal simulation would move the entire forecagborithm back in time by about 25
years: it would redefine the historical part of thED to include cohorts born 1875-1924,
reconstruct and recalibrate a weighted penaltyimg&tifrom those data, and so on.
Unfortunately, we lack sufficient historical data this ideal procedure: only Sweden has
complete data for any cohorts born before 1906 fanchany countries in our set data collection
began late enough that the earliest complete covastborn after 1925.

Because of these data limitations, for the 198%ukitron we use th& matrix derived
for the 2010 forecasts in the previous sections Tinplies that, unlike in our actual forecasts, in
the simulations there is some overlap between ditee used to develop the prior and the own-
country data used in the likelihood. The practmaisequences of this overlap are slight: as
mentioned previously, the improper prior is rematiansensitive to the choice of training data.

Using the prior distribution based &n we calculated the posterior mean and covariance
of 6 for each country over a grid including the 193170 @ohorts, based on data that would have
been available in 1985. We then compared the posteeans and credibility intervals from this

simulated forecast to the known fertility of thaseme cohorts over the next 25 years. Table 3
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summarizes results and coverage of CFR forecas#dlfof the countries for which we could
produce 1985 forecasts, disaggregated by the aipe abhort at the 1985 forecast horiZon.
Table 3 shows imperfect, but reasonable, coveragedsterior credibility intervals. In
particular, the 90% intervals perform well: theyntain 92% of true future CFRs, with fairly
good results by age at forecast. In contrast, 5G&svals are generally too wide for cohorts near
the end of reproductive life at the forecast, aartarrow for cohorts who are 25 or 30 on the
forecast date. The table also shows that most ©Fdst errors are small for cohorts that have
completed fertility through age 25. In 1985, thexauld have been a small but definite bias in
long-range forecasts of future fertility: for madtthe cohorts then in their 20s, CFRs forecasts
would have been slight underestimates. A Baydsiatast with our relatively weak priors
would have slightly over-extrapolated the downwiaesds in fertility across the cohorts born in
the 1930s, because their continuation did not iniplysual shapes for cohort schedules. This
problem occurred in the worst of the simulated 1@88casts, where the 90% posterior
probability interval for the CFR of Portuguese want®rn in 1965 (and thus age 20 on the

forecast date) was [1.11, 1.71], compared to azehICFR of 1.83.

® Simulated forecast plots for all countries can iesved at WEBSITE://sim1985.html
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TABLE 3
Simulated 1985 Forecasts compared to observed* BfRBge of cohort in 1985.
Error = (Posterior MAP CFR — Observed CFR)
% of Observations in Posterior Probability Intds

Age at Mean Mean Abs 5to 25to 75 to
Forecast Error Error 5 to 95%ile 25%ile 75%ile 95%ile
20 -.09 .15 85 8 54 23

25 -.03 .09 81 13 31 38

30 +.01 .03 94 38 38 19

35 +.00 .01 100 19 75 6

40 +.00 .00 100 12 88 0

ALL -.02 .05 92 18 57 17

Target 0 0 90 20 50 20

*For coverage evaluation we treat CFR data frompete cohorts as observed constants. In fact
they are very precise estimates from large natisaaiples. The CRR, column in Table 5 shows
typical standard errors. Results are aggregated1®&5 simulations for the 15 countries in which a
1985 forecast was possible: Austria, Bulgaria, @an&zech Republic, Denmark, England &
Wales, Finland, France, Hungary, Netherlands, Batf\Blovakia, Sweden, Switzerland, USA.

It is also useful to compare alternative modelgyroter to evaluate the degree to which
using both time and shape priors improves foreoagtrage. Table 4 repeats the fourth column
of Table 3, which reports the proportion of posteftast observations falling in the 90%
posterior interval for the full Bayesian model. Tthble also includes coverage calculations for
two alternative forecast procedures. The firstralitve model is a Bayesian model with time
series priors only [i.ew;=0 for all cohort shape penalties in Equation (?5)he second
alternative is a forecast produced by fitting inelegent ARIMA(1,1,0) models to the time series
of available rates at each age.

Coverage in a Bayesian model with only time seprgsr's (Alternative 1) is notably
worse than in the full model that includes shapeafiges for cohort schedules. There is clearly
considerable value added from the inclusion of shaors that prioritize time trends that lead to
more plausible shapes in the cohort dimensionnfple ARIMA model (Alternative 2)

produces CFR confidence intervals that are tocomafor women who are younger than 35 on

® We omit a model with only a shape prior from tisé 6f alternatives. Li and Wu (2003) noted thattsmodels
become unstable for women under 30 on the forefzdst with negative predicted rates at some agéseny large
differences in the fitted schedules across adjao@mbrts. After confirming their observations e thistorical data,
we opted to exclude a shape-only model as a sesitermative.
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the forecast date. This may occur because positivariances in fertility rates at similar ages
make the sum of age-specific rates (i.e., CFR) naar@able than one would expect under an
assumption of independent time series by age. Ttadcomparative coverage information in
Table 4 does not highlight another problem withitidependent ARIMA model — namely, a
systematic negative bias in CFR forecast bands, 8486 of realized CFRs for the 1941-1966
cohorts falling above the posterior medians predidty the ARIMA model, and 53% falling

above the posterior 5ercentile.

Table 4. Coverage of three alternative simulate@blf®recasts
Percent of CFR Observations* in 90% probghihterval
Forecast Model Alternative Model 1 Alternative Model 2

Age at Forecast Bayes (Shape+Time) Bayes (Time Only) ARIMA(1,1,0)
20 85 62 54
25 81 50 69
30 94 56 75
35 100 94 81
40 100 100 100
ALL 92 73 77
Target 90 90 90

*See notes for Table 3.

We conclude from this simulation exercise thatBlagesian model with shape and time
parameters is likely to perform well in terms ofdoast coverage. It has good coverage
properties across the 15 country forecasts thavere able to produce for 1985, and it clearly

outperforms the tested alternatives.

2010 Fertility Forecasts from Contemporary Data
Using our model with the rate estimates availabl2d10 for each country produces a
joint posterior distribution for each fertility dace6, via Equation (@17). With @24 countries,

30 ages, and hundreds of cohorts, this producesydarge set of output that we can only briefly
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summarize in this article. We focus here on a fages of interest. Readers can find a larger
volume of summary graphics for the entire dataosedur project websité.

One important feature of our model is the way mah priors for the shape of cohort
schedules constrain the projected time series@fsagcific rates. Linear time series
extrapolations that would produce implausibly-sttapehort schedules have low prior
probability, so effectively the forecast must commpise between observed rate levels and trends
in the period just before the forecast, and refy#sinaped fertility schedules for cohorts. As a
result, projected trends in age-specific ratesstametime deviate substantially from freeze-rate
or freeze-slope extrapolations.

Figure 5 shows an example, for Czech women at 26,€30, and 35. The solid points in
the three time series correspond to horizontaéslacross the surface in Figure 1, and illustrate
dramatic changes in fertility timing. Prior inforti@n suggests that a combination of continued
decline at age 25 with continued increases at agesd 35 is very unlikely, however, because
those changes would imply highly implausible shadpeshe schedules of still-incomplete
cohorts. In fact, thenaximum a posteriocompromise between cohort shapes and trends for
future Czech rates predicts fairly stable ratemgas 25, a reversal of recent increases at age 30,

and less-than-linear increase in the rate at age 35

" We have provided an offline copy of part of thebgiée for reviewers, in the fil€ohortFertility.zip. To see the
full set of results, unzip the file and open théex.htmffile in any browser. If the paper is published, wi#t make
the full project web site, including all data a@Raode, available to readers on the web.
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Figure 5. Czech fertility forecasts at ages 25,88@ 35. Light and dark bands are 90% and 50% pasfgobability intervals,
respectively. Dots are HFD estimates, dark hotaldmes are freeze-rate forecasts using theolas¢rved age-specific rate,
grey solid lines are freeze-slope forecasts barddst 5 observed rates.

If extrapolated linearly, Czech fertility for th®95 cohort at age 30 would reach levels
near the 99 percentile of all rates ever observed at that atéle rates at age 25 for that cohort
would be below the®ipercentilé® Although our improper priors do not penalize ahhigvel at
age 30 or a low level at age @6r se they do say that combination is very unlikelypa&sally
together with historically moderate rates at ageli3short,a priori knowledge about relative
fertility at different ages within cohorts impligg, this case, strong constraints on time patterns
of age-specific rates across cohorts.

We have a special interest in completed cohorilifgrt~or cohortc the posterior
distribution of completed fertility is
(199 CFR =16 =1G.0 ~ N(L G,y » 1 G2 ,G.1)

post

8 inear extrapolation would eventually predict négmrates for any age group with a negative trétehative rates
are also possible in our model, but in practice tisened out to be rare over our forecast peridd:2000 estimated
rates for cohorts born 1956-1995, only 7 had negatosterior means and only 230 had 90% probaliiligrvals
containing zero.
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from which one can calculate the MAP estimator posterior probability intervaldlore

plausible patterns in cohort schedules and timiesshould translate into more plausible trends

for completed cohort fertility.

Figure 6 illustrates four of the @35 CFR forecastes — for the USA, Netherlands,

Czech Republic, and Singapore. The very narrowepastprobability intervals show that it is

easy to forecast precisely the completed fertibtywomen who are already 30 and older, but

much harder for younger women. Probability intesviar cohort CFR are extremely narrow for

the cohorts with nearly complete fertility histariat the forecast date: biology makes it certain

that cohorts of women in their late 30s and eally dre already very close to their average

completed family sizes.
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Figure 6. Posterior distributions of completedifigyt-- USA, Netherlands, Czech Republic, and Sipgre — conditional on rate
estimates available in 2010. Light and dark baands90% and 50% posterior probability intervalspeztively. Dots are
posterior estimates for cohorts with complete ligrthistories through age 44.
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Posterior uncertainty about the completed fertiityhe later-born cohorts is small
enough, however, to allow some important qualiapyedictions about the likely fertility levels
of women born in the 1980s in our sample of coestrA Bayesian approach allows us to make
probabilistic statements about our main researéstipns: After steady declines in many
countries, is cohort fertility likely to rebound imcrease? The forecasts in Figure 6 provide
visual answers: future increases are almost carnahe US (where completed CFRs are already
rising), probable in the Netherlands, improbabléhm Czech Republic (although the decline
appears likely to stop), and almost certain naidour in Singapore.

Table 5 presents a more systematic evaluation, isigdiar each countfithe posterior
mean of CFRyeso and posterior means of the forecast differenetésden CFR for pairs of
cohorts born 10 years apart. Values in the lasetkolumns are positive if the later-born cohort
is forecast to have higher completed fertility. & cells have greater than 90% posterior
probability of being positive (dark shading) or a@ge (light shading).

There are some unique country trajectories in Tabl®ost notably, Denmark and the
US are the only countries in which women born i@@@re likely to have more children on
average than women born in 1960. The opposite holdgery other country in our data set.
Note that these 1960-1970 changes are virtualhaicebecause women born in 1970 were
already 40 in 2010, so that their final fertiligvels can be forecast very precisely.

The most notable feature of Table 5 is the highbabdity of positive CFR change
between the 1970 and 1980 cohorts in many coun@esforecasts suggest that it is highly
likely that in the near future, as women born ia 1970s reach their #%irthdays, most

countries will observe slight rebounds in compldetility. Very few are likely to see continued

° In this table we report results for Germany ashalesonly, and we omit Slovenia and Luxembourg heea
missing data for the 1956-1965 cohorts at young aggede a 2010 forecast impossible with our proadur
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decreases. However, taken as a whole the foremaggest that the decline in family sizes will
probably stop, or even reverse itself, in manyhefworld’s rich countries.

The general pattern does not apply everywherepafse. CFR forecasts show continued
decreases across cohorts born in the 1970s insddugnmopean countries (Portugal, Hungary,
and Slovakia), in Asia (Singapore and Korea), anBrazil (which is a special case because
CFR is still falling due to rapid economic progressl a classical transition from high to near-
replacement fertility levels).

Forecast uncertainty is much higher across thert®born in the 1980s, on whom we
have shorter histories with little data on whethienot women are postponing childbearing.
Although none of the 1970-1980 changes are sigmtflg different from zero using the 90%
probability threshold in Table 5, there are sevecoaintries (Sweden, Bulgaria, Russia) in which
there is a fairly high posterior probability of saised increase in average family sizes as women
born in the 1980s ‘cross the finish line’ on thgsf" birthdays. Similarly, continued decreases are
fairly likely over the 1980s cohorts for Singapdeertugal, Korea, Hungary, Estonia, Romania,

and Brazil.
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Table 5. Posterior means of CFR for women borrf#0] and for CFR changes between cohorts (stanigaidtions of changes in
parentheses). Shaded cells have >90% probabilitgiofy negative (light shading) or positive (dankding). Countries are sorted in
ascending order of CRRo

Expected CFR increase between birth cohorts

Country CFRosg( 1960-1970 1970-1980 1980-1990
Germany 1.66 (.002) -.15 (.00) +.12 (.04) -.07 (.17)
Italy 1.69 (.002) -.21 (.00) +.01 (.05) +.02 (.18)
Austria 1.70 (.005) -.07 (.01) -.02 (.06) -.08 (.20)
Switzerland 1.77 (.006) -.12 (.01) +.02 (.05) -.04 (.18)
Canada 1.83 (.003) -.03 (.01) +.15 (.07) +.01 (.21)
Japan 1.84 (.002) -.36 (.00) +.06 (.05) -.01 (.18)
Russia 1.85 (.001) -.24 (.00) +.09 (.05) +.08 (.18)
Netherlands 1.86 (.004) -.10 (.01) +.31 (.05) +.06 (.18)
Belgium 1.87 (.005) -.05 (.01) +.23 (.05) -.02 (.18)
Scotland 1.87 (.007) -.11 (.01) +.17 (.05) +.04 (.18)
Denmark 1.88 (.007) +.10 (.01) +.18 (.04) -.03 (.17)
Singapore 1.88 (.008) -.29 (.01) -.15 (.05) -.17 (.18)
Lithuania 1.91 (.008) -.16 (.01) +.20 (.05) .00 (.18)
Portugal 1.92 (.005) -.24 (.01) -.19 (.05) -.11 (.18)
Bulgaria 1.95 (.006) -.27 (.01) +.17 (.05) +.12 (.18)
Finland 1.96 (.007) -.07 (.01) +.12 (.05) +.05 (.18)
Greece 1.96 (.005) -.34 (.01) -.05 (.04) -.04 (.17)
England & Wales 1.97 (.002) -.06 (.00) +.21 (.05) +.05 (.18)
USA 2.01 (.001) +.12 (.01) +.27 (.07) -.01 (.22)
Hungary 2.02 (.005) -.16 (.01) -.27 (.05) -.14 (.18)
Czech Republic 2.03 (.006) -.14 (.01) -.06 (.05) -.05 (.18)
Sweden 2.05 (.006) -.06 (.01) +.15 (.04) +.13 (.17)
Estonia 2.06 (.013) -.18 (.02) .00 (.05) -.18 (.18)
Korea 2.08 (.002) -.33 (.00) -.07 (.04) -.07 (.17)
France 2.11 (.002) -.11 (.00) +.17 (.05) -.04 (.18)
Romania 2.16 (.004) -.54 (.01) +.05 (.05) -.08 (.18)
Australia 2.17 (.004) -.14 (.01) +.07 (.05) -.04 (.18)
Slovakia 2.17 (.007) -.24 (.01) -.21 (.05) +.03 (.18)
New Zealand 2.37 (.009) -.19 (.01) +.13 (.04) +.07 (.17)
Northern Ireland 2.42 (.014) -.29 (.02) +.23 (.05) -.06 (.18)
Iceland 2.45 (.034) -.13 (.04) +.12 (.06) -.04 (.18)
Brazil 2.86 (.002) -.48 (.00) -.13 (.04) -.10 (.17)
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As the widening probability intervals in Figure Bdathe increasing posterior standard
deviations in Table 5 make clear, forecasts bedammore speculative as we move to later-
born cohorts on whom we currently have shorteilitgrhistories. A great advantage of
Bayesian modeling over many other demographic &sterg methods is that we can quantify

the uncertainty about these speculative results.

Discussion

Over the last decade period fertility rates haserriin many developed countries, in part
due to a decelerating shift of births to older maéages. The impact of these changes on cohort
fertility is unclear, because the cohorts respdadir most births during this time of recent
increase are still ten to twenty years from compigetheir childbearing. To know if cohorts that
have postponed childbearing will ultimately havevée children, one needs to forecast, but
forecasting fertility is notoriously difficult (Bad 2006).

We have developed new Bayesian forecasting metiood®mpleted cohort fertility, and
applied them to the countries in the Human Feytiliatabase and to a number of additional
countries. Past efforts to forecast completed ddiedility have typically relied exclusively on
time trends, or on parametric models for rate solesd We combine these two approaches,
borrowing strength from recent time trends and &i@m historical patterns in cohort age
profiles. Our forecasts suggest that cohort féytis likely to stabilize or even increase slightly
in several countries. Among women born in the 59id early 1980s, current rate trends
suggest historically plausible age patterns oflfigrthat would lead to slightly larger average
family sizes for the women born later. The pattgppearing recently in several Scandinavian

countries (Andersson et al. 2009) may be spreaglseyvhere.
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Our method not only provides forecasts, but alsmtjties uncertainty. From the
column labeled “1970-80" in Table 5, for example see that for women born in the 1970s,
downward trends in cohort fertility appear to banshg or reversing in many countries. The
youngest of these women are not quite 30 at oeccst horizon, but posterior probabilities
show that we know enough to predict with high coefice that their completed fertility will be
greater than that of women born 10 years earl@rwemen born in the 1980s, the oldest of
whom were in their late 20s at the forecast horizorecasts become much more uncertain and
the posterior distribution tells us so: from stawddeviations one can see that probability
intervals for CFRggrCFRy9g0in the third column of Table 5 would be approxiniataree to
four times as wide as those for the GERCFR, 970 difference in the second column.

Quantifying uncertainty also shows that one caulipteéhe final fertility of older cohorts
very precisely. This occurs not only because cotimgehe fertility of older women involves a
short forecast period, but also because their éueentility paths are very well knowan priori.

The very narrow probability intervals shown in Fig for cohorts born as recently as 1980
indicate that demographers already know quite abbout the average completed fertility of
women who are today in their 30s.

Our methods are quite general. The same approatth lbe applied, with only minor
modifications, to many demographic problems. Theskide forecasting childlessness and
parity-specific fertility, and forecasts of firstamiage and never-marrying. Beyond demography,
the technique of SVD decomposition with penalizegjgrtion residuals is adaptable across
many domains. The idea of using simultaneous pesatft overlapping dimensions is similarly
applicable to many problems. Quadratic penaltiesranltivariate normality could be used in a

variety of forecasting and other missing-data peotd. The quadratic penalty approach is
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computationally convenient, because it does natiregxtensive sampling from the posterior
distribution. It is also relatively easy to explamresearchers who are unfamiliar with Bayesian
vocabulary, because posterior means can also baireg as penalized least-squares solutions,
as ridge regressions, or even as variants of snrmgpsiplines (Wood 2000).

Probabilistic forecasting methods have become arand mortality forecasting, since
the introduction of Lee and Carter's (1992) appncaambining singular value decomposition of
rates by age and time with classical time seriethaus. Girosi and King (2008) and Soneji and
King (2011) have recently used Bayesian metho@dsltbadditional structure to mortality
forecasts, by using prior information on age patdo make forecasts demographically more
coherent. Bayesian models also allow forecasta §parser and lower-quality data, such as that
available for cause of death.

Although uncertainty is inherently greater for fiést forecasts, statistical agencies and
demographers studying cohort trends have genegigd on deterministic projections and
forecasts. Our hope is that developments in prdisaibifertility modeling, in combination with
the public availability of high quality data seiteel the Human Fertility Database, will increase
understanding of fertility trends and help demograpesearchers to express more precisely how

much we do — and don’'t — know about the future.
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Appendix
As described in Girosi and King (2008), an impropeor of the form
Inf(8) =const-368 K@
can be understood through eigen-decompositioneofahk-deficient matriX. Specifically,

write that decomposition as

- 1o Dl O U:'I. — ]
K=UDU = [uU, U] o ol |ul|” u,D, U,

whereU’s columns are orthonormal eigenvectaes)k(K)=r, Uy contains eigenvectors
corresponding to the zero eigenvalu@sjs anr x r diagonal matrix of positive eigenvalues, and

U; is a 1200 x matrix containing the eigenvectors correspondintihé positive eigenvalues.

Adopting a new orthogonal coordinate systegjrb@ased on the columns Ofyields

0= v, v)”

:| = UOyO + UlJ/l

whereyo=Uy'6 andy;=U1’6. In terms of the-coordinates, a prior based Enimplies

const - % (5 Ug + 4, U; U, D, Uy (U o+ U, 1)
const—3 y,D,

Inf(y)

In other words, the improper prior basedkorells us thab’s y; coordinates have a normal
distribution with mean zero and covariance mafrix , while the remaining (1206)-yo
coordinates are completely unrestricted.

Under a weighted, combined prior wKl¥Z;(wK;), thej-th penalty is
n = 6 K,6

J
(6 Us +1Up) Ky (Ug o+ Uy 1)
¥y, U K, U, y, + termsinvolving y,

If we define a special expectation operator E* elatays conditions op=0, then it is possible
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to calculate

Ex(nlw)= E*(), UK, U, p,)
= E*(wacdy U K, U, )
= E* ( trace[ U K; U, VlVl])
= tracq U; K, U, E* (/)
= tracq UK, U, D;*
= tracd K, U, D7'U; ]
= trace K| K*]

whereK " is the generalized (Moore-Penrose) inversk ofThe relationships between weights
and expected penalties are complex and nonlineaweMer, this expression for E#fw) allows
us to quickly calculate the implications of a givaat of weights, and therefore to construct a
prior distribution for which all penalties have eqted values that match their empirical

averages in historical data.



