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Combining insights from quantile and ordinal regression:
Child malnutrition in Guatemala

Stuart Sweeneya,∗, Frank Davenporta, Kathryn Graceb

aDepartment of Geography, University of California, Santa Barbara CA 93106-4060
bDepartment of Geography, University of Utah, Salt Lake CityUT 84112-9155

Abstract

Chronic child undernutrition is a persistent problem in developing countries and has been the focus of hun-

dreds of studies where the primary intent is to improve targeting of public health and economic development

policies. In national level cross-sectional studies undernutrition is measured as child stunting and the goal

is to assess differences in prevalence among population subgroups. Severaltypes of regression modeling

frameworks have been used to study childhood stunting but the literature provides little guidance in terms

of statistical properties and the ease with which the results can be communicated to the policy community.

We compare the results from quantile regression and ordinalregression models. The two frameworks can

be linked analytically and together yield complementary insights. We find that reflecting on interpretations

from both models leads to a more thorough analysis and forcesthe analyst to consider the policy utility of

the findings. Guatemala is used as the country focus for the study.

Keywords: child chronic undernutrition, quantile regression, ordinal regression, Guatemala

1. Introduction

Malnutrition and starvation are enduring interests in the development literature, especially in the ‘basic

needs’ conception of development. Malnutrition concerns development policy because nutritional status is

often strongly associated with productivity, labor force participation, and educational attainment, especially

in poor agrarian societies (Berg and Muscat, 1972; Aldermanet al., 2006; Strauss and Thomas, 1998;

Jamison, 1986).

∗Corresponding author. Phone: 805-618-8317
Email addresses:sweeney@geog.ucsb.edu (Stuart Sweeney ),frank.davenport@gmail.com (Frank Davenport),

grace@geog.ucsb.edu (Kathryn Grace)

Preprint submitted to Elsevier June 10, 2012



Page 2 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

In this paper we evaluate the science and policy interpretations of regression models used to study child

malnutrition generally, and specifically as applied to the context in Guatemala. We focus on chronic mal-

nutrition and use a widely acceptedstuntingmetric as an operational measure. Much of the research and

policy literature has relied on standard linear regressionor binary outcome models. Several recent papers

have used ordinal regression models and a handful of academic studies have utilized quantile regression. As

compared to standard regression, these conceptually similar models relax constraints in the model specifi-

cation permitting more targeted interpretations of covariate effects. We draw analytic connections between

the two specifications, with the goal of examining the usefulness of an integrated interpretation of chronic

child malnutrition.

The integration of the model results is primarily motivatedby the potential advantages in clarifying the

policy interpretations. The comparison also highlights complications that arise in the ordinal regression

model estimation. The utility of quantile regression will only be of interest under location-scale shifts, but

that implies a heteroskedastic error distribution and inconsistent ordinal regression estimates. We recover

consistent estimates with a two-stage estimator that directly links information about the error distribution

from a first stage median regression to the second stage ordinal regression.

The model comparison is framed using recent data from Guatemala. Plagued by the highest rates of

chronic undernutrition in Latin America – the prevalence ofstunting among Guatemalan children under 5

years of age is nearly 55% – health and policy researchers continue to explore the most effective means

for improving the nutrition of Guatemalans (Espindola et al., 2005; WHO, 2010). As recent malnutrition

research indicates stagnant, and possibly worsening, levels of chronic undernutrition (WHO, 2010) iden-

tifying the policy-relevant factors and their potential impact on stunting continues to be an important area

of research. In this study we develop model specifications motivated by past research of child stunting

in Guatemala and broadly informed by general food security and nutrition health and policy literatures.

Our intent is not to produce a definitive analysis of Guatemalan child undernutrition. Rather, we use the

Guatemalan context to demonstrate how the integrated modeling strategy can yield useful policy insights.

The paper proceeds as follows. Section 2 explores the policycontext and conceptualizations underlying

malnutrition research and then reviews the standard model specifications that have been used in past empir-

ical studies. Quantile regression and ordinal regression models are reviewed in detail. Section 3 describes

the data source and defines a consensus set of independent variables from published research on Guatemala.

Sections 5, 6 and 7 contain the results, a discussion, and then conclusions.
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2. Malnutrition: Concepts, Models, and Policy Interpretations

Malnutrition refers to any deviations from normal “healthy” nutrition; both undernutrition and over-

nutrition. In this study we focus on under-nutrition which is the more common type of malnutrition ex-

perienced by children in Guatemala. While detailed clinical tests and diet analysis can isolate the causes

and nature of undernutrition at the individual level, anthropometric measures were developed for large scale

prevalence studies that can be implemented in countries even when the national public health infrastructure

is weak or non-existent (Seoane and Latham, 1971). The standard anthropometric measure of chronic child

undernutrition is the height (length)1 for age Z-score (HAZ)(WHO, 2004).2 The Z-score is derived by com-

paring an individual or population to the international standard height growth curves that were developed

in the Multicenter Growth Reference Study (MGRS)3, conducted by the World Health Organization from

1997 and 2003 (WHO, 2004).4 Children are considered healthy if their HAZ score lies within two stan-

dard deviations of the mean height for age ratio (|HAZ| ≤ 2). Undernutrition is suspected when a child’s

score is more than two standard deviations below the mean. If−3 < HAZ ≤ −2 children are classified as

stunted(or malnourished) and ifHAZ ≤ −3 children are consideredseverely stunted(or severely malnour-

ished). Guatemala’s extreme levels of chronic undernutrition are reflected in Figure 1. In Guatemala, the

distribution of HAZ for children aged 12-36 months is shifted to the left so that approximately 49% of the

population is eitherseverely stuntedor stunted.

2.1. Models

Past research on stunting has used standard linear regression (Pebley and Goldman, 1995; Marini and

Gragnolati, 2003), ordered or unordered categorical response models (Sahn and Stifel, 2002; Brennan et al.,

2004; Lee et al., 2010), or quantile regression (Borooah, 2005; Sturm and Datar, 2005; Bassolé, 2007;

Aturupane et al., 2008; Fenske et al., 2009; Kandpal and McNamara, 2009). These methods are typically

presented in isolation and as thebestor most appropriate specification for building empirical models of

malnutrition. We explore an alternative approach in this paper where we combine the insights gained from

both quantile regression and ordinal regression.

1Length is used for children younger than 24 months, height isused for children older than 24 months (WHO, 2004).
2Height for age is the preferred measure of chronic malnutrition because it is less likely than other indicators to be impacted by

disease or other sources of stress when the data is collected. For example Borooah (2005), citing Sahn and Stifel (2002),notes that
height for age, unlike weight, will not be impacted by temporary ailments such as diarrhea or malaria.

3http://www.who.int/childgrowth/mgrs/en/
4The length for height Z-scores used in this study were calculated using the WHO Anthro 2.02 macros for SPSS, see

http://www.who.int/childgrowth/software/en/.
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Quantile regression is easiest to understand in relation tolinear regression estimated using ordinary

least squares (OLS). In OLS, we estimate the parameters,β, by minimizing the sum of squared deviations

from the conditional mean of the dependent variable (
∑

(yi − ŷi)2, where ˆyi is the conditional meanµ(xi , β)).

The resulting parameters are interpreted as the shift in theconditional mean ofy given a unit change in

x. Quantile regression simply changes the distance functionand the pivot point used in the minimization

problem (Koenker, 2005; Koenker and Bassett, 1978).5 The parameter estimates are interpreted as a shift

in the location of quantile,τ, given a unit change in covariatex. As such, the parameter estimates may vary

depending on the quantile chosen:

Qy[τ|xi ] = β0(τ) + β1(τ)xi .

Based on the discussion of our dependent variable (HAZ), we choseτ = {0.26, 0.49, 0.91}. The first two

correspond to the approximate thresholds for severe stunting and stunting, and the last is approximately

centered in the “healthy” range for Guatemala and is nearyi = 0.

For ordinal regression models we convert the continuous variable,yi , into an ordered categorical vari-

able,y∗i , with the levels (j = 1, 2, 3) using the quantile thresholds defined above:

y∗i =



































1 if yi ≤ −3

2 if − 3 < yi ≤ −2

3 if yi > −2

Ordinal regression is used to describe variation among individuals in the probability of class membership

( j = 1, 2, 3) conditional on covariates,Pr(y∗i ≤ j|xi) = F(xT
i γ j).6 The direct parameter estimates are difficult

to interpret for ordinal models but post-processing allowsus to recover the marginal effects of covariates

on unconditional probabilitiesPr(y∗i = j) and conditional probabilitiesPr(y∗i = k|k ≥ j) (Harrell, 2001;

Gelman and Pardoe, 2007). The marginal effects for the latter probabilities are somewhat easier to interpret.

For the sake of completeness, we present both results in section 4.

Quantile and ordinal regression are approximately linked through an inverse relationship. Assumey(t)

is a threshold value of the random variableY with distribution function,F : Ry→ τ ∈ [0, 1]. Any threshold

y(t) has an associated and unique probabilityτ(t) if F is a monotonic increasing function;F(Y ≤ y(t)) = τ(t).

5For a given quantile,β is estimated by minimizing,
∑n

i=1 ρτ(yi − ξ(xi , β)), where the check function with argumentv is defined,

ρτ(v) =

{

τv if v ≥ 0
(1− τ)v if v < 0

6The coefficients are given the non-standard symbolγ rather thanβ to distinguish between the two sets of estimates.
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In quantile regression, the inverse distribution providesthe mapping,G(F(Y ≤ y(t))) = G(τ(t)) = y(t).

Given a fixed set of quantilesτ(t) we study variation iny(t) conditional on covariates. Ordinal regression

operates directly in the distribution function space for ordered discrete outcomes,y∗, with probabilities

Pr(y∗ = j) =
∫ y(t)

k+1

y(t)
k

f (u)du wherey(t)
k andy(t)

k+1 are two threshold values. In ordinal regression the threshold

valuesy(t) are held fixed and we study variation in the probabilitiesPr(y∗ = j) conditional on covariates. As

such, the outcomes for the two models are mathematically related but without knowing the exact functional

form of F it is only a loose coupling, and in quantile regression the functional form ofF is left unspecified.7

As long as the underlying empirical CDF is increasing and theordinal regression parameters are estimated

consistently, then interpretations from the two models provide complementary perspectives on the same

underlying process.

2.2. Estimation and specification testing

For the quantile regression parameter estimation we use well-established methods that are available in

major software packages (Koenker, 2010).8 In addition to general specification testing there is particular

interest in assessing whether there is evidence of changes beyond a simple conditional shift in the location

of the quantile. There are several descriptive approaches and formal tests that can be used to characterize

changes in the response distribution. These include testing constant slope hypotheses (H0 : β(0.26) =

β(0.49) = β(0.91)), interpreting ordering among quantile effects, and direct tests against a null ofpure

location shiftor a null of location-scale shift(Hao and Naiman, 2007; Koenker and Xiao, 2002; Handcock

and Morris, 1999). If all, or most, of the estimated effects provide no evidence refuting a pure location

shift then the additional flexibility afforded by quantile regression is unnecessary, and conditional mean

models should suffice. In most of the published papers using quantile regression to study child stunting

or other anthropometry measures there is evidence of location-scale shifts or more general evidence of

complex conditional distributions. Given that microdata from survey samples is typically characterized by

heteroskedasticity (Greene, 2003), the existence of location-scale shifts comes as no surprise. In these cases

quantile regression estimates remain consistent but thereis a slight loss in efficiency.

In the presence of heteroskedasticity, ordinal regressionmodels will yield inconsistent coefficient esti-

mates (Greene, 2003). Consider a simple binary model for theprobability of severe stunting. The underlying

7Quantile regression uses only the order statistics ofY.
8We coded our own pairs cluster bootstrap and the standard errors and test statistics are based on the bootstrap covariance

matrix. Results based on simple pairs bootstrap, a weightedpairs bootstrap, and a weighted cluster bootstrap are available from
the authors.
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index function,yi = xT
i γ + ǫi , with y∗ = 1 if yi < −3 andy∗ = 0 otherwise is:

Pr(yi < −3|xi) = Pr(xT
i γ + 3+ ǫ < 0) = Pr(ǫ > xTγ∗).

The intercept absorbs the+3 shift (indicated by the∗ on γ∗) and captures the non-central probability

evaluation. Under heteroskedasticity of an unknown functional form,σ(x), the index function becomes,

yi = xT
i γ + σ(xi)ǫi , the probability model is,

Pr(yi < −3|xi) = Pr













ǫi >
xT

i γ
∗

σ(xi)













,

and MLEs ofγ∗ based onx are inconsistent (Greene, 2003).

Typically when estimating ordinal regression models the latent continuous dependent variableyi is un-

observed. In our case we observeyi and we can use residuals from a first stage estimation to develop

an estimate of the scaling factorσ(xi). Specifically, we adapt Zhao’s (2001) approach to consistent me-

dian regression estimation under heteroskedasticity of anunknown form. His approach builds on work by

Newey and Powell (1990) that relies on Stone’s (1977)k nearest neighbors (k-NN) estimators applied to the

residuals from a median regression of the untransformed data. The basic estimator has the form:

σ̂i =

n
∑

j=1

Wi j |êi j | i = 1, 2, . . . , n (1)

whereWi j arek-NN weights. Zhao’s (2001) paper contains proofs of consistency and Monte Carlo simula-

tion results for the median regression case that demonstrate the relative efficiency of alternative estimators.

Also note that the estimated scaling effects (σ̂i) no longer depend on observed or unobserved covariates.

In our application, we use a parallel estimation strategy, except that in the second stage we transform the

design matrix by dividing each row by, ˆσi, prior to estimating the ordinal regression, and our concern is

improving relative consistency.9

The full set of thresholds and covariate effects,γ̂ j, in the ordinal regression are estimated jointly in a

single model specification. The binary outcome variable is the 2n × 1 vectory∗ = [I(y ≤ −3), I(y ≤ −2)],

9A simulation study of the two-stage estimators properties is available from the authors. The Monte Carlo simulation parallels
section 3 of (Zhao, 2001). We simulate data with three types of heteroskedasticity. In stage 1, we fit a median regression and used
the residuals from the model to estimate ˆσi . Thek-NN weights based on 30% of the sample and a triangular kernelwere then used
to transform regressors and intercepts in the ordinal model. The distribution of the estimates were compared to a model with no
heteroskedasticiy, the uncorrected index function, and anindex function transformed by the known weights. The untransformed
model yielded clearly biased parameter estimates. Thek-NN based weights removed substantial bias and were very close to the
true model and almost identical to model based on an index function transformed by the true weights. While the the rescaling by
σ̂i removes bias, there is an accompanying marked degradation in efficiency.

6
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whereI is an index function taking the value 1 if the condition is true and 0 otherwise. The 2n × 2(k + 1)

design matrix for the regression is,

X∗ = I2 ⊗ (diag(σ̂−1)X) (2)

whereI2 is a 2×2 identity matrix,σ−1 is a vector with elements{1/σ̂i}, andX is ann× (k+1) design matrix

(including intercept) fork covariates.10 Standard errors are calculated using a pairs cluster bootstrap.11

A final issue with the ordinal regression model is interpretation of the parameter estimates. Direct

interpretation of ordinal regression parameter estimatesis more complicated than interpretation for simple

binary outcome logit or probit models (Greene, 2003). We follow the recommendation of Gelman and

Pardoe (2007) and report average predictive comparisons onthe probability scale. Essentially, the idea is

to use the inverse logit transformation to calculate pairwise differences in predicted probabilities over the

full data set while also incorporating uncertainty in parameter estimates. The resulting average predictive

comparisons for each effect have an interpretation similar to standard regression analysis; it is the change

in the probability expected from a one unit change in the covariate effect with other covariates held fixed.

In our application it also has the domain specific interpretation of the average model predicted difference

in prevalence from a one unit change in the covariate. Another advantage of using average predictive

comparisons is that probability predictions can be combined to form more interpretable marginal probability

effects. In our case the direct model predictions yield probabilities of severe stunting,Pr(y∗ = 1|x) and of

severe stunting or stunting,Pr(y∗ ≤ 2|x). Within the average predictive comparison framework we can

recover the unconditional probabilitiesPr(y∗ = 2|x) from Pr(y∗ ≤ 2|x) − Pr(y∗ = 1|x), Pr(y∗ = 3|x) from

1 − Pr(y∗ ≤ 2|x), and the conditional probability,Pr(y∗ = 2|y∗ > 1, x) using [Pr(y∗ ≤ 2|x) − Pr(y∗ =

1|x)]/[1 − Pr(y∗ = 1|x)].

To sum up, the estimation strategy we propose is as follows:

1. Fit a quantile regression and use formal and informal tests to assess whether there are complex

distributional features. If not, analysis can proceed withOLS and/or standard ordinal regression.

10k is inclusive of the dummy variable created for Region and other multi-category qualitative covariates. The design matrix
approach used to simultaneously estimate multiple thresholds in a cumulative logit is discussed originally in Winshopand Mare
(1984).

11An R code implementation of the two stage estimation: 1)k-NN weighting estimation ofσi from êi , and 2) ordinal regression
with various bootstrap estimator options, is available from the lead author.

7
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2. Fit a median regression, recover the residuals, and use (1) to estimate the scaling effects, ˆσi.

3. Constructy∗, D∗ from (2), and then fit an ordinal logit or probit model ofy∗ on D∗.

4. Use average predictive comparisons to recover probabilities that are most relevant for the problem

under study.

2.3. Policy interpretations

Studies of undernutrition using regression based approaches are intended to support and guide nutri-

tional planning and to promote the importance of nutrition in broader development policy. If the studies use

anthropometric measures the goal is typically to characterize and compare prevalences among subpopula-

tions. How exactly should the results of these models be interpreted in this policy context and how are those

interpretations supported by integrating quantile and ordinal regression results?

While the underlying anthropometric measures of undernutrition are continuous, in the policy context

the concept of chronic undernutrition is most frequently expressed as categorical. As noted previously, the

World Health Organization definesstuntingandsevere stuntingas categories in relation to standard height-

for-age z-scores. Nutrition policy therefore tends to mirror this categorical classification; assessment of

national or regional chronic undernutrition is typically presented as the proportion of the population that is

classified as stunted or severely stunted. Similarly, nutrition program development goals are conceived of

in terms of reducing the share of population in those categories.

Ordinal regression models provide a direct conceptual linkto the discrete category framing of chronic

undernutrition. Using transformations to the probabilityscale and average predictive comparisons, ordinal

models allow covariate effects to be interpreted as the probable change, given a unit change in the covariate,

in the proportion of the population that is eitherseverely stunted, stunted, or stunted conditional on not

severely stunted. In a policy setting, the results can be linked to the categorical framing and used to develop

targeted outreach. The predictive differences from the ordinal regression models can be viewed as smoothed

versions of the underlying data that highlight specific contrasts.

While the policy merits of direct estimates of changes in prevalence are relatively self-evident, the

prevalence estimates do not provide a complete picture for policy interpretation. In particular, there is little

information provided about the potential efficacy of targeting a particular group, the exact nature of the

targeting that should be pursued, or the potential trade-offs that should be considered.

8
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The information about conditional shifts in distributional form from quantile regression can actually

speak to some of those issues. Consider a simple binary variable effect that results in a leftward shift in the

distribution (towards higher prevalence of stunting or severe stunting). If the scale change is also negative,

it implies the subpopulation is relatively more homogeneous in being worse off, and in turn implies that

policies targeting the subpopulation will be more effective compared to a case when the scale does not

decrease. The exact changes in prevalence will not be clear from the quantile results and will depend on

the size of the location shift, but this is exactly where the ordinal regression results can complement the

interpretation.

A second case to consider is when the leftward shift in the distribution is also characterized by skewing

to the left. In this case, the skewing might reveal that thereis a small population of extreme outcomes

within the severe stunting category, for example. While theprevalence change might reveal an increase, the

additional information about the presence of extreme casesshould inform the policy process. For example,

policies could be pursued to target the most extreme cases that would be judged successful even if the

prevalence of extreme child stunting does not improve. It would also be justification for fitting ordinal

models with more tail categories. But those models might have too few data points to effectively capture

the pattern.

Those are just the two most obvious cases when distributional effects made evident by quantile regres-

sion would provide useful information to policy assessmentand development. Given the broad range of

potential distributional effects that might be identified we are suggesting that each of those may prove use-

ful in a policy setting, and that those insights would be missed using conditional mean models. We believe

that the joint consideration of insights about covariate effects on conditional distributions with covariate

effects on changes in prevalence will force analysts to engage with the real complexities of the processes

under study, and that communication of the results will resonate with a policy audience because they are

framed using the benchmarks and measures dominant in national and international health planning.

We should note that in most published studies, the quantileschosen are a systematic selection of the

domain ofy – such as all deciles or all quintiles (Abrevaya, 2001; Borooah, 2005; Bassolé, 2007). To

identify the kinds of distributional effects introduced above requires at least three quantiles. While more

nuanced information could be gained from producing resultsat a greater number of quantiles, perhaps

every 5th or 10th percentile, our goal in presenting the analysis of the Guatemalan data is to provide an

example of the interpretations discussed in this section using real survey data. The choice of three quantiles

9
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allows for more simple tabular and graphical comparisons while still allowing us to capture changes in

conditional distributions. Moreover, we also believe thatanalysis of quantiles that are near the thresholds

of HAZ = {−3,−2} (mapping toτ = {0.24, 0.49} in our study) provides a meaningful connection to the

ordinal regression analysis. If we had chosen to include additional quantiles, we would have retained

τ = {0.24, 0.49} in the broader set.

3. Data

To demonstrate the proposed advantages in policy interpretation we provide an example analysis and

interpretation focused on child undernutrition in Guatemala. The data are from the 2000 Guatemala Living

Standards and Measurement Survey (LSMS). The LSMS is an in-depth household, community, and price

survey; the household portion covers 7,276 households witha total of 37,771 individuals.12 The survey

is nationally representative and includes modules for demographic, economic, health, and community data

(INE, 2000). We selected the subset of records for children aged 12 to 36 months. If a household had

multiple children in the age range, then we selected only theyoungest child to avoid estimation issues

associated with household-level clustering. Our final sample used in this analysis contains information for

1,520 Guatemalan children (see Table 1).

As mentioned in the introduction, the purpose of this paper is not to revisit previous work on child

malnutrition in Guatemala, but rather to highlight the advantages of the modeling strategy outlined in section

2. Thus our choice of variables is not exhaustive but is reflective of the types of measures used in published

empirical studies of Latin American malnutrition (Marini and Gragnolati, 2003; Pebley and Goldman, 1995;

Farrow et al., 2005; Larrea and Kawachi, 2005; Balk et al., 2005).

We rely on parents’ height (average of the mother’s and father’s height), child’s age and the sex of the

child to capture biological-based variation. The household and parental variables used are ethnicity,13 a

breastfeeding measure, mother’s education, a poverty indicator, floor material, and the number of children

in the household under age five. We also include regional and community effects that have been highlighted

12The data was collected by the Guatemalan National Statistics Institute (INE), with assistance and technical guidance from the
World Bank LSMS team, from July to December 2000 . A total of 745 primary sampling units (PSU’s) were selected at random
from 11,170 spatial sectors (similar to USGS 7 quadrangles). The sectors were pre-designated as rural or urban based on results
from a 1994 population census. A roughly equal number of sectors was selected for each of the eight administrative regions in
Guatemala.

13Indigenous people differ from their non-Indigenous counterparts in language (there are 22 non-Spanish languages spoken in
Guatemala) and often in dress. Indigenous people are generally economically, socially, and politically marginalizedand face many
barriers (language, economic, educational) to health and public services (Pebley and Goldman, 1995; Lee et al., 2010)

10



Page 11 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

as significant in related studies. Specifically we include type of place of residence (urban versus rural),

region of residence, and community water source.

4. Results

The results in this section are provided as an example of the range of distributional effects that can

be detected in analysis of survey data, and as a demonstration of the interplay between interpretations of

quantile and ordinal regression models. The model results are provided in two forms. Tabular displays

of the coefficients and standard errors can be found in Tables 2 and 3. These same results are presented

graphically in Figures 3, 4, and 5. Both models produce a fairly large and complex set of coefficients, and

the figures were designed to facilitate comparison of the relative magnitudes and dispersion acrossτ’s for

a single variable, across variables, and between the models. The dispersion is represented by horizontal

lines spanning the 10th to 90th quantiles of the parameter distribution. The major difference between the

graphical results is that the quantile effects are on the scale of HAZ whereas the ordinal regression results are

the expected change in probability, or equivalently the predicted change in prevalence. As such, beneficial

outcomes are characterized by positive coefficients in the quantile results (representing a rightward shift in

the conditional quantile) and negative coefficients in the ordinal results (the probability of being classified

as stunted decreases).

Following the analytic strategy proposed above, we start byassessing whether the quantile results pro-

vide evidence of distributional complexities beyond a pureconditional location-shift. An informal assess-

ment is to check whether parameter estimates are uniformly increasing or decreasing with quantiles and

whether those differences are significant. Comparing the pairwise tests of fixed slopes in Table 4 and ef-

fect ordering in Figure 3, the effects for urban, Southwest region, Northwest region, Indigenous, and bare

floor are all suggestive of location-scale shifts or more complex distributional effects. Notice that several

other effects, for example parents’ height or number of children, would be captured adequately with a pure

location-shift/conditional mean effect. A more formal approach is to use hypothesis tests against a null

of pure location shift or a null of location-scale shift (Koenker and Xiao, 2002). One effect (Southwest)

rejected the null of pure location shift at theα =0.10 level and three others (Northeast, age, and water

delivery) rejected it at theα =0.15 level. Four effects (Northeast, Southwest, water delivery, and educa-

tion) rejected the null of location-scale shift at theα =0.10 level.14 Overall, we have sufficient evidence to

14Critical values are 2.57 (α =0.01), 2.05 (α =0.05), and 1.77 (α =0.10). The test statistics for location-shift are Southwest
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assume that the more robust and flexible quantile specification is warranted. As noted in the methodology

section, this in turn has implications for the ordinal regression, and specifically argues for the use of our

heteroskedasticity-adjusted estimator.

As a specific example of integration of the two regression approaches and their advantages over sim-

ple OLS or binary models, we explore in detail the effects for the binary ethnicity covariate (Ladino vs

Indigenous). At the most basic level there is evidence of some heightened prevalence of stunting for Indige-

nous based on Table 1. To get a visual sense of the distributional issues we can compare the unconditional

densities for the Indigenous and Ladino subpopulations (Figure 2). ComparingLadino to Indigenous the

quantiles shift left unequally with the smallest magnitudeshift for the lowest quantile and the largest mag-

nitude for the highest quantile. This reflects the move from amore dispersed to less dispersed distribution

and is clearly evident in the figure. Notice that from the quantile shifts alone we cannot discern the implied

changes in prevalence without assuming a functional form for both distributions. Because of the leftward

shift, prevalence for stunting and severe stunting increase while prevalence of non-stunting decreases.

We need to move to a regression framework to control for compositional effects that might confound the

simple unconditional distributional analysis of ethnicity. From the quantile regression results we see that

after controlling for other covariates, the conditional shifts in quantiles retain the same ordering (|βeth(τ =

0.26)| < |βeth(τ = 0.49)| < |βeth(τ = 0.91)|); so the complex distributional features have persisted. Using

simple linear regression for the same model would yield an ethnicity effect of -0.34 and would imply equiv-

alent shifts of that amount for all quantiles.15 As noted in section 2.3, the relatively smaller scale of the

Indigenous distribution, controlling for other compositional effects, suggests that the subpopulation is more

easily targeted than if there had been a leftward shift and anincrease in scale.

The ordinal regression allows us to directly explore changes in prevalence that are not apparent from the

quantile results. Using the two-stage estimator from section 2.2, yields the parameter estimates in Table 3

and post-processing of the bootstrap sample estimates using average predictive comparisons yields Figures

4 and 5. The expected changes in prevalence of severe stunting, stunting, and no stunting retain the same

relative ordering as our analysis based on simple density comparisons, but the magnitudes change after

controlling for covariates (see Figure 4). The change in prevalence of stunting, conditional on no severe

(1.95), Northeast (1.72), age (1.76), and water delivery (pipes inside 1.74, pipes outside 1.74, well 1.71, other 1.68). The test
statistics for location-scale shift are Northeast (1.79),Southwest (1.85), water delivery (pipes inside 1.62, pipesoutside 1.67,
well 1.94, other 1.65), and education (primary 1.78, secondary or more 1.61). For the full models, the test statistics were 23.64
(location-shift) and 24.73 (location-scale) were below the critical values. Full tests results are available from theauthors.

15Note that any predictions out of an OLS model that are used to then assess prevalence as1
n

∑n
i=1 I (ŷi < −2) would be wrong

since it imposes a symmetric distribution.
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stunting is isolated in Figure 5, allowing us to assess the simple lower tail of a binary outcome rather than

thinking about the complex set of changes that occur over multiple cut-points as a distribution shifts and

changes shape. There is an increase in prevalence of almost 0.1 among indigenous even after controlling for

other covariates. This is a result that can be easily adaptedinto the policy context in support of targeting.

While both models provide complementary insights into the effect of ethnicity that are sensitive to changes

in shapes of underlying distributions, the ordinal regression results give us direct insights into changes in

prevalence that will be more easily digested and understoodin policy settings.

The heteroskedasticity adjustment is evident in the changes in parameter estimates from the two-stage

estimator that (Table 3) and unadjusted ordinal regression(Table A.5). The unadjusted ˜γeth,(y<−3) = 0.11

and the adjusted ˆγeth,(y<−3) = 0.26 more than doubles; and the unadjusted ˜γeth,(y<−2) = 0.63 and adjusted

γ̂eth,(y<−2) = 0.42 while closer capture a clear adjustment effect. Those differences in parameter estimates

also carry through to the average predictive comparisons. Also note that in the case where covariate es-

timates suggest only a location-shift effect (e.g. age or number of children), the unadjusted and adjusted

ordinal regression parameter estimates are roughly equal.

The assessment of significant effects from the ordinal regression results can also benefit by referring

to significance of the same effects in the quantile regression. As noted above, the heterskedastic-corrected

estimates are successful in removing bias, but they are lessefficient than the uncorrected estimates, and

ordinal regression is already less efficient than quantile regression because of information lossin the trans-

formation of a continuous variable to binary outcomes. However, since the ordinal regression effects are

reflecting changes in quantiles through the distribution function, the information about significance in the

quantile results can be used as an additional source of information in evaluating the results of the ordinal

regression.

5. Discussion and Conclusions

In this paper we compared the results of two methods useful inevaluating correlates of child stunting.

We first illustrated the theoretical and econometric links between two common statistical models: quantile

and ordinal regressions. We then used child malnutrition inGuatemala as a case study, and demonstrate the

insights that can be gained from a interpretation that reflects an integration of the insights drawn from each

model.

At the most basic level of sign and significance of effects, the models provide us with results that

are already known - ethnicity, sanitation and place of residence have notable impacts on malnutrition out-

13
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comes. Apart from the existence of numerous studies revealing these patterns, these relationships between

malnutrition outcomes and various individual, household and parental characteristics are hinted at in basic

descriptive tables presenting means and prevalences. Simple tabular analysis can be used to highlight differ-

ences in prevalence while regression models provide insightful nuance ensuring that the more complicated

relationships are not masked by confounding or aggregationeffects. Regression models therefore provide

a frequently used strategy enabling analysts toadjust for characteristics not of prime interest. And while

regression analysis represents a more complex analysis than cross-tabulations, even without extensive sta-

tistical training, policy-makers are fairly well versed inapplying model results in a relevant way, primarily

through the use of prevalence values. Based on this research, however, we suggest that employing a single

regression modeling strategy may not indeed be adequate to fully capture the patterns underlying under-

nutrition in the developing world. We have demonstrated that by slightly increasing the complexity of the

analytic strategy – joint consideration of quantile regressionandordinal regression models – the results pro-

vide a more complete representation of actual patterns and increase the policy utility of the interpretations.

We conclude that while the expected changes in prevalence based on estimates from ordinal regression

are more easily explained in a policy setting, there are distributional features that enrich the interpretation

that can only be isolated using quantile regression. Specifically, quantile regression allows analysts to

identify possible changes in the scale or shape of the conditional distribution; information that may also

prove useful for policy. We discussed the approach to policyframing in section 2.3 and return to policy

considerations in our discussion of the results for Indigenous children. We noted that the quantile regression

reveals a reduced scale, implying more uniform stunting among Indigenous and thus making the Indigenous

a good target for intervention. The ordinal results complement this finding with an estimate of the difference

in the prevalence of stunting among Indigenous andLadino after controlling for compositional effects of

the two populations. The prevalence difference provides a target for the magnitude of reduction thatmight

be possible to achieve through targeted policy. We suggest that an analyst’s understanding of the process

under study, the policy utility, and a policy audience’s ability to engage with the results are each improved

if the two regression approaches are used in combination.

Finally, if quantile regression is warranted, we noted thatordinal regression results will be inconsistent.

We proposed a two-stage estimator for ordinal regression using residuals from a first stage median regression

to remove scaling effects in the index function of the ordinal regression model. The approach we describe

in this paper could be useful in related research in which continuous data is grouped into discrete categories
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(this is frequently the case for analysis of anthropometry data).

There are a few remaining issues that we plan to take up in future research. While the estimation strat-

egy proposed resolved a critical problem in making statistically valid comparisons between quantile and

ordinal regression, there are other econometric issues that may present in other research settings. In this

paper we proposed a strategy for an unfocused analysis to reveal basic patterns of covariation. If analysis

instead focuses on a specific policy treatment effect, or more generally aims for causal interpretations of

regression effects, the estimation strategy will also need to account for endogeneity. The instrumental vari-

ables estimator proposed by Chernozhukov and Hansen (2005,2008) can be used to deal with endogeneity

in quantile regression. For ordinal regression we suspect that the residual method proposed by (Terza et al.,

2008) could be seemlessly imbedded in framework we proposedin this paper. More general issues of unob-

served heterogeneity will need to be considered for panel data. This is an active research area for quantile

regression. For ordinal regression we plan to investigate whether existing strategies for fixed or random

effect estimators can be incorporated into the two-stage estimator introduced in this paper.
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Malnourished
HAZ<-3 −3 ≤ HAZ <-2 HAZ ≥-2

Observations 402 350 768 1,520
HAZ -3.92 -2.47 -0.69 -2.04
Urban 0.27 0.28 0.48 0.37
Region: Metropolitan 0.20 0.15 0.25 0.21
Region: North 0.10 0.10 0.09 0.10
Region: Northeast 0.04 0.09 0.13 0.09
Region: Southeast 0.07 0.11 0.08 0.09
Region: Central 0.10 0.11 0.12 0.11
Region: Southwest 0.28 0.28 0.22 0.25
Region: Northwest 0.19 0.12 0.08 0.12
Region: Peten 0.02 0.04 0.05 0.04
Sex (male) 0.56 0.49 0.52 0.52
Age (months) 3.68 3.83 3.63 3.69
Parents’ height -0.36 -0.24 0.35 0.01
Indigenous 0.57 0.57 0.26 0.42
Water (surface) 0.11 0.10 0.07 0.09
Water (pipes in house) 0.38 0.49 0.59 0.51
Water (pipes on property) 0.17 0.13 0.13 0.14
Water (piped from well) 0.09 0.02 0.01 0.04
Water (other) 0.25 0.26 0.20 0.23
Breastfed 6 months 0.61 0.64 0.71 0.66
Mother’s education (None) 0.58 0.43 0.31 0.42
Mother’s education (Primary) 0.32 0.48 0.42 0.40
Mother’s education (Secondary+) 0.10 0.08 0.27 0.18
Number of children 2.08 2.00 1.71 1.88
Bare floor 0.72 0.54 0.36 0.51
Poverty 0.75 0.75 0.48 0.62

Table 1: Weighted means and proportions
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Variable τ = 0.26 τ = 0.49 τ = 0.92
β SE β SE β SE

Intercept -1.597∗∗ (0.319) -0.978∗∗ (0.256) 1.262. (0.657)
Urban 0.050 (0.111) 0.166. (0.099) 0.464∗∗ (0.170)
Region: North 0.080 (0.172) 0.287. (0.169) 0.095 (0.368)
Region: Northeast 0.042 (0.177) 0.059 (0.176) 0.402 (0.334)
Region: Southeast -0.306 (0.200) -0.171 (0.168) 0.031 (0.319)
Region: Central -0.267. (0.151) -0.104 (0.156) -0.199 (0.251)
Region: Southwest -0.480∗∗ (0.163) -0.155 (0.187) 0.369 (0.309)
Region: Northwest -0.523∗∗ (0.155) -0.306∗ (0.150) -0.046 (0.354)
Region: Peten 0.234 (0.172) 0.133 (0.144) -0.288 (0.293)
Sex (male) -0.176∗ (0.081) -0.151. (0.078) -0.059 (0.153)
Age (months) -0.095∗∗ (0.034) -0.119∗∗ (0.029) -0.225∗∗ (0.062)
Parents’ height 0.544∗∗ (0.067) 0.555∗∗ (0.058) 0.520∗∗ (0.093)
Indigenous -0.189. (0.112) -0.327∗∗ (0.102) -0.559∗∗ (0.214)
Water (pipes in house) 0.017 (0.197) 0.160 (0.146) -0.350 (0.506)
Water (pipes on property) -0.330 (0.212) -0.167 (0.175) -0.800 (0.512)
Water (piped from well) -0.723∗ (0.326) -0.492 (0.311) -0.752 (0.612)
Water (other) -0.144 (0.201) 0.049 (0.150) -0.179 (0.486)
Breastfed 6 months 0.133 (0.093) 0.108 (0.089) 0.194 (0.152)
Mother’s education (Primary) 0.236∗ (0.106) 0.155 (0.102) 0.054 (0.185)
Mother’s education (Secondary+) 0.419∗∗ (0.139) 0.207 (0.143) 0.019 (0.224)
Number of children -0.169∗∗ (0.061) -0.231∗∗ (0.054) -0.236∗ (0.100)
Bare floor -0.280∗∗ (0.102) -0.145. (0.084) -0.011 (0.169)
Poverty -0.193 (0.118) -0.241∗ (0.098) -0.186 (0.181)

Table 2: Quantile regression results. Standard errors are based on a pairs cluster bootstrap estimator. Symbols indicate results of
tests forHo : β(τ) = 0; α ≤ 0.01 (**), α ≤ 0.05 (*), α ≤ 0.1 (.),α > 0.1 ()
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Variable y < −3 y < −2
γ SE γ SE

Intercept -1.645∗∗ ( 0.433) -1.209∗∗ ( 0.392)
Urban -0.310. ( 0.167) -0.235. ( 0.123)
Region: North -0.360 ( 0.290) -0.318 ( 0.235)
Region: Northeast -0.360 ( 0.467) 0.051 ( 0.246)
Region: Southeast -0.205 ( 0.324) 0.228 ( 0.236)
Region: Central 0.053 ( 0.266) 0.014 ( 0.212)
Region: Southwest -0.012 ( 0.287) 0.134 ( 0.235)
Region: Northwest 0.181 ( 0.256) 0.324 ( 0.212)
Region: Peten -0.562. ( 0.342) -0.053 ( 0.219)
Sex (male) 0.138 ( 0.117) 0.140 ( 0.109)
Age (months) 0.042 ( 0.047) 0.147∗∗ ( 0.041)
Parents’ height -0.669∗∗ ( 0.102) -0.652∗∗ ( 0.091)
Indigenous 0.256 ( 0.155) 0.424∗∗ ( 0.134)
Water (pipes in house) -0.114 ( 0.206) -0.168 ( 0.233)
Water (pipes on property) 0.203 ( 0.266) 0.084 ( 0.280)
Water (piped from well) 1.077∗ ( 0.524) 0.737 ( 1.043)
Water (other) -0.175 ( 0.221) -0.054 ( 0.238)
Breastfed 6 months -0.271. ( 0.132) -0.081 ( 0.122)
Mother’s education (Primary) -0.354. ( 0.156) -0.144 ( 0.134)
Mother’s education (Secondary+) -0.876∗∗ ( 0.402) -0.319. ( 0.197)
Number of children 0.233∗ ( 0.089) 0.277∗∗ ( 0.071)
Bare floor 0.297. ( 0.142) 0.069 ( 0.113)
Poverty 0.292 ( 0.195) 0.242. ( 0.125)

Table 3: Ordinal regression results. Standard errors are based on a pairs cluster bootstrap estimator.
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Variable Null Hypothesis:β(τi) = β(τ j )
τ = (0.26, 0.49) τ = (0.49, 0.91) τ = (0.26, 0.91)

Urban 0.203 0.029 0.007
Region: North 0.190 0.307 0.292
Region: Northeast 0.459 0.121 0.112
Region: Southeast 0.242 0.328 0.192
Region: Central 0.292 0.408 0.326
Region: Southwest 0.032 0.017 0.000
Region: Northwest 0.156 0.105 0.033
Region: Peten 0.439 0.208 0.264
Sex (male) 0.231 0.147 0.064
Age (months) 0.281 0.003 0.001
Parents’ height 0.307 0.305 0.307
Indigenous 0.176 0.038 0.009
Water (pipes in house) 0.366 0.254 0.295
Water (pipes on property) 0.391 0.131 0.192
Water (piped from well) 0.406 0.466 0.506
Water (other) 0.253 0.418 0.446
Breastfed 6 months 0.372 0.337 0.335
Mother’s education (Primary) 0.273 0.289 0.235
Mother’s education (Secondary+) 0.113 0.288 0.112
Number of children 0.229 0.287 0.207
Bare floor 0.131 0.219 0.079
Poverty 0.297 0.253 0.319

Table 4: P-values from pairwise difference in slope tests.
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Figure 1: HAZ distribution for children aged 12 to 36 months
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Figure 2: Unconditional densities comparing Indigenous toLadino.
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Figure 3: Quantile regression results. Standard errors arebased on pairs cluster bootstrap. Shading indicates results of tests for
Ho : β(τ) = 0; α ≤ 0.05 (black),α ≤ 0.1 (gray),α > 0.1 (white)
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Figure 4: Ordinal regression results. Average Predictive Comparisons of unconditional probabilities. Shading indicates results of
tests forHo : β(τ) = 0; α ≤ 0.05 (black),α ≤ 0.1 (gray),α > 0.1 (white)
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Figure 5: Ordinal regression results. Average Predictive Comparisons of continuation ratio probabilities. Shading indicates results
of tests forHo : β(τ) = 0; α ≤ 0.05 (black),α ≤ 0.1 (gray),α > 0.1 (white)
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Appendices
Appendix A. Ordered logit parameters with no heteroskedasticity adjustment

Variable y < −3 y < −2
γ SE γ SE

Intercept -1.594∗∗ ( 0.519) -1.504∗∗ ( 0.480)
Urban -0.336. ( 0.205) -0.324. ( 0.159)
Region: North -0.422 ( 0.414) -0.465 ( 0.314)
Region: Northeast -0.702 ( 0.459) -0.134 ( 0.352)
Region: Southeast -0.259 ( 0.406) 0.393 ( 0.310)
Region: Central 0.040 ( 0.363) -0.002 ( 0.289)
Region: Southwest 0.162 ( 0.374) 0.204 ( 0.296)
Region: Northwest 0.187 ( 0.362) 0.204 ( 0.307)
Region: Peten -0.943. ( 0.394) -0.211 ( 0.303)
Sex (male) 0.221. ( 0.135) 0.161 ( 0.128)
Age (months) 0.037 ( 0.055) 0.179∗∗ ( 0.053)
Parents’ height -0.751∗∗ ( 0.115) -0.926∗∗ ( 0.107)
Indigenous 0.114 ( 0.176) 0.625∗∗ ( 0.164)
Water (pipes in house) -0.140 ( 0.257) -0.200 ( 0.257)
Water (pipes on property) 0.396 ( 0.312) 0.180 ( 0.290)
Water (piped from well) 1.523∗∗ ( 0.427) 1.081. ( 0.639)
Water (other) 0.051 ( 0.266) -0.034 ( 0.253)
Breastfed 6 months -0.320. ( 0.139) -0.116 ( 0.136)
Mother’s education (Primary) -0.533∗∗ ( 0.162) -0.102 ( 0.147)
Mother’s education (Secondary+) -0.709∗ ( 0.303) -0.370 ( 0.253)
Number of children 0.249∗∗ ( 0.092) 0.320∗∗ ( 0.079)
Bare floor 0.417∗∗ ( 0.163) 0.117 ( 0.147)
Poverty 0.113 ( 0.198) 0.246 ( 0.160)

Table A.5: Ordered logit parameters, no adjustment for heteroskedasticity
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