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Combining insights from quantile and ordinal regression:
Child malnutrition in Guatemala

Stuart Sweenéy, Frank Davenpoft Kathryn Grace

aDepartment of Geography, University of California, Santiiara CA 93106-4060
bDepartment of Geography, University of Utah, Salt Lake Cify84112-9155

Abstract

Chronic child undernutrition is a persistent problem ineleping countries and has been the focus of hun-
dreds of studies where the primary intent is to improve timgef public health and economic development
policies. In national level cross-sectional studies undgition is measured as child stunting and the goal
is to assess fferences in prevalence among population subgroups. Seypes of regression modeling
frameworks have been used to study childhood stunting leutitdrature provides little guidance in terms
of statistical properties and the ease with which the resslh be communicated to the policy community.
We compare the results from quantile regression and ordagaéession models. The two frameworks can
be linked analytically and together yield complementaights. We find that reflecting on interpretations
from both models leads to a more thorough analysis and fdheeanalyst to consider the policy utility of
the findings. Guatemala is used as the country focus for thuy.st

Keywords: child chronic undernutrition, quantile regression, oaliregression, Guatemala

1. Introduction

Malnutrition and starvation are enduring interests in teeetbpment literature, especially in the ‘basic
needs’ conception of development. Malnutrition concemgetbpment policy because nutritional status is
often strongly associated with productivity, labor for@etjipation, and educational attainment, especially
in poor agrarian societies (Berg and Muscat, 1972; Aldermiaal., 2006; Strauss and Thomas, 1998;
Jamison, 1986).
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In this paper we evaluate the science and policy interpoeisbf regression models used to study child
malnutrition generally, and specifically as applied to thatext in Guatemala. We focus on chronic mal-
nutrition and use a widely acceptstuntingmetric as an operational measure. Much of the research and
policy literature has relied on standard linear regressiobinary outcome models. Several recent papers
have used ordinal regression models and a handful of acadmdiies have utilized quantile regression. As
compared to standard regression, these conceptuallyasimddels relax constraints in the model specifi-
cation permitting more targeted interpretations of catardfects. We draw analytic connections between
the two specifications, with the goal of examining the usedss of an integrated interpretation of chronic
child malnutrition.

The integration of the model results is primarily motivatgdthe potential advantages in clarifying the
policy interpretations. The comparison also highlightsnpéications that arise in the ordinal regression
model estimation. The utility of quantile regression witilp be of interest under location-scale shifts, but
that implies a heteroskedastic error distribution and msegient ordinal regression estimates. We recover
consistent estimates with a two-stage estimator thatttirécks information about the error distribution
from a first stage median regression to the second stageabrdiression.

The model comparison is framed using recent data from GudgeniPlagued by the highest rates of
chronic undernutrition in Latin America — the prevalencestointing among Guatemalan children under 5
years of age is nearly 55% — health and policy researchetsnoento explore the mostffiective means
for improving the nutrition of Guatemalans (Espindola et 2005; WHO, 2010). As recent malnutrition
research indicates stagnant, and possibly worsenindslefe&hronic undernutrition (WHO, 2010) iden-
tifying the policy-relevant factors and their potentialgact on stunting continues to be an important area
of research. In this study we develop model specificationtivated by past research of child stunting
in Guatemala and broadly informed by general food secunty mutrition health and policy literatures.
Our intent is not to produce a definitive analysis of Guatemadhild undernutrition. Rather, we use the
Guatemalan context to demonstrate how the integrated ingdsttategy can yield useful policy insights.

The paper proceeds as follows. Section 2 explores the podiatext and conceptualizations underlying
malnutrition research and then reviews the standard medelifgcations that have been used in past empir-
ical studies. Quantile regression and ordinal regressiodeats are reviewed in detail. Section 3 describes
the data source and defines a consensus set of independahtesafrom published research on Guatemala.

Sections 5, 6 and 7 contain the results, a discussion, anctctrelusions.
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2. Malnutrition: Concepts, Models, and Policy Interpretations

Malnutrition refers to any deviations from normal “healthyutrition; both undernutrition and over-
nutrition. In this study we focus on under-nutrition whichthe more common type of malnutrition ex-
perienced by children in Guatemala. While detailed clinteats and diet analysis can isolate the causes
and nature of undernutrition at the individual level, aoffometric measures were developed for large scale
prevalence studies that can be implemented in countrieswelien the national public health infrastructure
is weak or non-existent (Seoane and Latham, 1971). Theatmadthropometric measure of chronic child
undernutrition is the height (lengthfor age Z-score (HAZ)(WHO, 2004) The Z-score is derived by com-
paring an individual or population to the internationalnstard height growth curves that were developed
in the Multicenter Growth Reference Study (MGRS)onducted by the World Health Organization from
1997 and 2003 (WHO, 2004).Children are considered healthy if their HAZ score lies wittwo stan-
dard deviations of the mean height for age rafifdAZ| < 2). Undernutrition is suspected when a child’s
score is more than two standard deviations below the mear3 ¥ HAZ < -2 children are classified as
stunted(or malnourished) and ilAZ < —3 children are considerezkverely stunte¢br severely malnour-
ished). Guatemala’s extreme levels of chronic undermuorriare reflected in Figure 1. In Guatemala, the
distribution of HAZ for children aged 12-36 months is shift® the left so that approximately 49% of the

population is eitheseverely stuntedr stunted

2.1. Models

Past research on stunting has used standard linear regréBsibley and Goldman, 1995; Marini and
Gragnolati, 2003), ordered or unordered categorical rspmodels (Sahn and Stifel, 2002; Brennan et al.,
2004; Lee et al., 2010), or quantile regression (Borooal®52&turm and Datar, 2005; Bassolé, 2007;
Aturupane et al., 2008; Fenske et al., 2009; Kandpal and Mwa, 2009). These methods are typically
presented in isolation and as thestor most appropriate specification for building empiricaldats of
malnutrition. We explore an alternative approach in thigsggavhere we combine the insights gained from

both quantile regression and ordinal regression.

ILength is used for children younger than 24 months, heighsési for children older than 24 months (WHO, 2004).

2Height for age is the preferred measure of chronic malnotribecause it is less likely than other indicators to be ichgeh by
disease or other sources of stress when the data is collé@edxample Borooah (2005), citing Sahn and Stifel (200&0es that
height for age, unlike weight, will not be impacted by tengrgrailments such as diarrhea or malaria.

3httpy//www.who.infchildgrowthimgrgery

4The length for height Z-scores used in this study were catedl using the WHO Anthro 2.02 macros for SPSS, see
httpy/www.who.inychildgrowthsoftwareery.
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Quantile regression is easiest to understand in relatidméar regression estimated using ordinary
least squares (OLS). In OLS, we estimate the parameiebs; minimizing the sum of squared deviations
from the conditional mean of the dependent variabléy( - V)%, wherey! is the conditional mean(x;, 8)).
The resulting parameters are interpreted as the shift icdheitional mean of given a unit change in
X. Quantile regression simply changes the distance funeti@hthe pivot point used in the minimization
problem (Koenker, 2005; Koenker and Bassett, 1978he parameter estimates are interpreted as a shift
in the location of quantiler, given a unit change in covariake As such, the parameter estimates may vary
depending on the quantile chosen:

QylrIx] = Bo(r) + Ba(7)%.
Based on the discussion of our dependent variable (HAZ),woser = {0.26,0.49,0.91}. The first two
correspond to the approximate thresholds for severe stuatind stunting, and the last is approximately
centered in the “healthy” range for Guatemala and is gear0.

For ordinal regression models we convert the continuousiva, y;, into an ordered categorical vari-

able,y", with the levels ( = 1,2, 3) using the quantile thresholds defined above:

1 ify; < -3
yi=42 if —3<y;<-2
3 ify; > -2
Ordinal regression is used to describe variation amongishatals in the probability of class membership
(J = 1,2,3) conditional on covariate®r(y; < j|x) = F(XIT’)/J').G The direct parameter estimates ar@dilt
to interpret for ordinal models but post-processing allasgo recover the marginaffects of covariates
on unconditional probabilitie®r(y" = j) and conditional probabilitie®r(y; = klk > j) (Harrell, 2001,
Gelman and Pardoe, 2007). The margirfegets for the latter probabilities are somewhat easier tpnét.
For the sake of completeness, we present both results iosdct
Quantile and ordinal regression are approximately linkedugh an inverse relationship. Assugié
is a threshold value of the random variablevith distribution functionf : Ry — 7 € [0, 1]. Any threshold

vy has an associated and unique probabiiityif F is a monotonic increasing functiof(Y < y®) = 7®,

SFor a given quantileg is estimated by minimizingt; p-(y; — £(%, 8)), where the check function with argumenis defined,

W) = Vv ifv>0
PI=V @-7v  ifv<oO

5The codficients are given the non-standard sympaother tharg to distinguish between the two sets of estimates.
4
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In quantile regression, the inverse distribution provitles mapping,G(F(Y < y9)) = G(r®) = yO.
Given a fixed set of quantiles? we study variation in/Y conditional on covariates. Ordinal regression
operates directly in the distribution function space fodeved discrete outcomey;, with probabilities
Priy" = j) = fy(’kfil f(u)du wherey(kt) andy(ktil are two threshold values. In ordinal regression the thidsho
valuesy® are held fixed and we study variation in the probabilife§y* = j) conditional on covariates. As
such, the outcomes for the two models are mathematicaliyebut without knowing the exact functional
form of F it is only a loose coupling, and in quantile regression thefional form ofF is left unspecified.

As long as the underlying empirical CDF is increasing andattiinal regression parameters are estimated
consistently, then interpretations from the two modelsvigl® complementary perspectives on the same

underlying process.

2.2. Estimation and specification testing

For the quantile regression parameter estimation we udeestalblished methods that are available in
major software packages (Koenker, 20380 addition to general specification testing there is pakiic
interest in assessing whether there is evidence of chamyesith a simple conditional shift in the location
of the quantile. There are several descriptive approacheégamal tests that can be used to characterize
changes in the response distribution. These include testimstant slope hypothesddy(: £(0.26) =
£(0.49) = B(0.91)), interpreting ordering among quantilffexts, and direct tests against a nullmfre
location shiftor a null oflocation-scale shiffHao and Naiman, 2007; Koenker and Xiao, 2002; Handcock
and Morris, 1999). If all, or most, of the estimatefiieets provide no evidence refuting a pure location
shift then the additional flexibility ffiorded by quantile regression is unnecessary, and condlitroean
models should dfice. In most of the published papers using quantile regnegsictudy child stunting
or other anthropometry measures there is evidence of toeatiale shifts or more general evidence of
complex conditional distributions. Given that microdatanf survey samples is typically characterized by
heteroskedasticity (Greene, 2003), the existence ofimcatale shifts comes as no surprise. In these cases
quantile regression estimates remain consistent but iherslight loss in ficiency.

In the presence of heteroskedasticity, ordinal regressiodels will yield inconsistent cdicient esti-

mates (Greene, 2003). Consider a simple binary model fgrthteability of severe stunting. The underlying

"Quantile regression uses only the order statistics.of

8We coded our own pairs cluster bootstrap and the standandseand test statistics are based on the bootstrap covarianc
matrix. Results based on simple pairs bootstrap, a weigtaed bootstrap, and a weighted cluster bootstrap areadaifrom
the authors.
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index function,y; = XiTy + g, withy* = 1if y; < =3 andy* = 0 otherwise is:
Pryi < -3x) = Pr(x'y + 3+ € < 0) = Pr(e > x"y*).

The intercept absorbs the3 shift (indicated by the: on y*) and captures the non-central probability
evaluation. Under heteroskedasticity of an unknown fumeti form, o(x), the index function becomes,
yi = X'y + o(%)a , the probability model is,
Ly
Pr(yi < -3Ix) = Pr(fi > %)
and MLEs ofy* based orx are inconsistent (Greene, 2003).

Typically when estimating ordinal regression models theriacontinuous dependent varialgles un-
observed. In our case we obseryeand we can use residuals from a first stage estimation to afevel
an estimate of the scaling facto(x;). Specifically, we adapt Zhao’s (2001) approach to consigtee-
dian regression estimation under heteroskedasticity afrdmmown form. His approach builds on work by
Newey and Powell (1990) that relies on Stone’s (19/@@arest neighbor&{NN) estimators applied to the

residuals from a median regression of the untransformeal ddie basic estimator has the form:

n
&i:ZWi”e” i=12...,n 1)
=1

whereW,; arek-NN weights. Zhao's (2001) paper contains proofs of coasist and Monte Carlo simula-
tion results for the median regression case that demoagtratrelative ficiency of alternative estimators.
Also note that the estimated scalinffegts ¢5) no longer depend on observed or unobserved covariates.
In our application, we use a parallel estimation strateggept that in the second stage we transform the
design matrix by dividing each row by;;, prior to estimating the ordinal regression, and our camégr
improving relative consistendy.

The full set of thresholds and covariatffeets,yj, in the ordinal regression are estimated jointly in a

single model specification. The binary outcome variabléészh x 1 vectory* = [I(y < -3),1(y < -2)],

A simulation study of the two-stage estimators propersesvailable from the authors. The Monte Carlo simulatiorajbels
section 3 of (Zhao, 2001). We simulate data with three typéeteroskedasticity. In stage 1, we fit a median regressidruaed
the residuals from the model to estimate Thek-NN weights based on 30% of the sample and a triangular kerewd then used
to transform regressors and intercepts in the ordinal motie¢ distribution of the estimates were compared to a modél mo
heteroskedasticiy, the uncorrected index function, anshdex function transformed by the known weights. The urgfammed
model yielded clearly biased parameter estimates. KR8l based weights removed substantial bias and were vesg t¢tothe
true model and almost identical to model based on an indestitmtransformed by the true weights. While the the reagaliy
Ji removes bias, there is an accompanying marked degradatafificiency.

6
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wherel is an index function taking the value 1 if the condition isetand 0 otherwise. Then 2(k + 1)

design matrix for the regression is,

X* = I, ® (diag(G"1)X) (2

wherel ; is a 2x 2 identity matrix,c— is a vector with elementd/&;}, andX is annx (k+ 1) design matrix
(including intercept) fok covariates? Standard errors are calculated using a pairs cluster bapfst

A final issue with the ordinal regression model is interpieta of the parameter estimates. Direct
interpretation of ordinal regression parameter estimiatesore complicated than interpretation for simple
binary outcome logit or probit models (Greene, 2003). Weéofolthe recommendation of Gelman and
Pardoe (2007) and report average predictive comparisomniseoprobability scale. Essentially, the idea is
to use the inverse logit transformation to calculate paendiferences in predicted probabilities over the
full data set while also incorporating uncertainty in paeden estimates. The resulting average predictive
comparisons for eachffect have an interpretation similar to standard regressiaitysis; it is the change
in the probability expected from a one unit change in the data dfect with other covariates held fixed.
In our application it also has the domain specific intergiataof the average model predictedfdrence
in prevalence from a one unit change in the covariate. Amatldwantage of using average predictive
comparisons is that probability predictions can be combtodorm more interpretable marginal probability
effects. In our case the direct model predictions yield prdligsi of severe stunting?r(y* = 1|x) and of
severe stunting or stuntinggr(y* < 2|x). Within the average predictive comparison framework we ca
recover the unconditional probabiliti€r(y* = 2|x) from Pr(y* < 2|x) — Pr(y* = 1|x), Pr(y* = 3|x) from
1- Pr(y* < 2|x), and the conditional probabilityr(y* = 2ly* > 1,x) using Pr(y* < 2|x) — Pr(y* =
191/[1 = Pr(y" = 11¥)].

To sum up, the estimation strategy we propose is as follows:

1. Fit a quantile regression and use formal and informas tesassess whether there are complex

distributional features. If not, analysis can proceed Wtts andor standard ordinal regression.

10k is inclusive of the dummy variable created for Region andothulti-category qualitative covariates. The design iatr
approach used to simultaneously estimate multiple thtdshp a cumulative logit is discussed originally in Winshapd Mare
(1984).

An R code implementation of the two stage estimatiork-NN weighting estimation ofr; from &, and 2) ordinal regression
with various bootstrap estimator options, is availablefithe lead author.

7
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2. Fit a median regression, recover the residuals, and Jise €stimate the scalingfects,o.
3. Construcy*, D* from (2), and then fit an ordinal logit or probit modelyfon D*.
4. Use average predictive comparisons to recover probiabithat are most relevant for the problem

under study.

2.3. Policy interpretations

Studies of undernutrition using regression based appesaale intended to support and guide nutri-
tional planning and to promote the importance of nutritiolioader development policy. If the studies use
anthropometric measures the goal is typically to chareeteand compare prevalences among subpopula-
tions. How exactly should the results of these models begreeed in this policy context and how are those
interpretations supported by integrating quantile andhatdegression results?

While the underlying anthropometric measures of undeitinrirare continuous, in the policy context
the concept of chronic undernutrition is most frequentlpressed as categorical. As noted previously, the
World Health Organization definessuntingandsevere stuntings categories in relation to standard height-
for-age z-scores. Nutrition policy therefore tends to orirthis categorical classification; assessment of
national or regional chronic undernutrition is typicallgepented as the proportion of the population that is
classified as stunted or severely stunted. Similarly, torriprogram development goals are conceived of
in terms of reducing the share of population in those categor

Ordinal regression models provide a direct conceptualtlinthe discrete category framing of chronic
undernutrition. Using transformations to the probabitibale and average predictive comparisons, ordinal
models allow covariateffects to be interpreted as the probable change, given a w@amigetin the covariate,
in the proportion of the population that is eitheeverely stuntedstunted or stunted conditional on not
severely stuntedn a policy setting, the results can be linked to the caiegbframing and used to develop
targeted outreach. The predictivéfdrences from the ordinal regression models can be viewedestbed
versions of the underlying data that highlight specific casts.

While the policy merits of direct estimates of changes invalence are relatively self-evident, the
prevalence estimates do not provide a complete picturediarypinterpretation. In particular, there is little
information provided about the potentiafieacy of targeting a particular group, the exact nature of the

targeting that should be pursued, or the potential trafketbat should be considered.
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The information about conditional shifts in distributidriarm from quantile regression can actually
speak to some of those issues. Consider a simple binanbleddect that results in a leftward shift in the
distribution (towards higher prevalence of stunting oresevstunting). If the scale change is also negative,
it implies the subpopulation is relatively more homogerseoubeing worse @, and in turn implies that
policies targeting the subpopulation will be morieetive compared to a case when the scale does not
decrease. The exact changes in prevalence will not be clearthe quantile results and will depend on
the size of the location shift, but this is exactly where thdiral regression results can complement the
interpretation.

A second case to consider is when the leftward shift in thieibligion is also characterized by skewing
to the left. In this case, the skewing might reveal that thera small population of extreme outcomes
within the severe stunting category, for example. Whilegttealence change might reveal an increase, the
additional information about the presence of extreme csisesld inform the policy process. For example,
policies could be pursued to target the most extreme cas¢svtbuld be judged successful even if the
prevalence of extreme child stunting does not improve. luld@lso be justification for fitting ordinal
models with more tail categories. But those models mighehao few data points tofiectively capture
the pattern.

Those are just the two most obvious cases when distributatfects made evident by quantile regres-
sion would provide useful information to policy assessneamd development. Given the broad range of
potential distributional #ects that might be identified we are suggesting that eactosétimay prove use-
ful in a policy setting, and that those insights would be misasing conditional mean models. We believe
that the joint consideration of insights about covaridfeas on conditional distributions with covariate
effects on changes in prevalence will force analysts to engdtpetine real complexities of the processes
under study, and that communication of the results will nese with a policy audience because they are
framed using the benchmarks and measures dominant in ab#ind international health planning.

We should note that in most published studies, the quarthesen are a systematic selection of the
domain ofy — such as all deciles or all quintiles (Abrevaya, 2001; Baiga2005; Bassolé, 2007). To
identify the kinds of distributional féects introduced above requires at least three quantilesle\iiore
nuanced information could be gained from producing resatlita greater number of quantiles, perhaps
every 5th or 10th percentile, our goal in presenting theyeamlof the Guatemalan data is to provide an

example of the interpretations discussed in this sectiolgusal survey data. The choice of three quantiles
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allows for more simple tabular and graphical comparisongewdtill allowing us to capture changes in
conditional distributions. Moreover, we also believe thaalysis of quantiles that are near the thresholds
of HAZ = {-3,-2} (mapping tor = {0.24,0.49} in our study) provides a meaningful connection to the
ordinal regression analysis. If we had chosen to includetiadd! quantiles, we would have retained

7 = {0.24,0.49} in the broader set.

3. Data

To demonstrate the proposed advantages in policy intetpetwe provide an example analysis and
interpretation focused on child undernutrition in GuatEmahe data are from the 2000 Guatemala Living
Standards and Measurement Survey (LSMS). The LSMS is arpthchousehold, community, and price
survey; the household portion covers 7,276 households avitital of 37,771 individual$?> The survey
is nationally representative and includes modules for dgaphic, economic, health, and community data
(INE, 2000). We selected the subset of records for childigedal2 to 36 months. If a household had
multiple children in the age range, then we selected onlyythengest child to avoid estimation issues
associated with household-level clustering. Our final daraped in this analysis contains information for
1,520 Guatemalan children (see Table 1).

As mentioned in the introduction, the purpose of this papendt to revisit previous work on child
malnutrition in Guatemala, but rather to highlight the atteges of the modeling strategy outlined in section
2. Thus our choice of variables is not exhaustive but is rifieof the types of measures used in published
empirical studies of Latin American malnutrition (Marim&Gragnolati, 2003; Pebley and Goldman, 1995;
Farrow et al., 2005; Larrea and Kawachi, 2005; Balk et al0530

We rely on parents’ height (average of the mother’'s and fatieight), child’s age and the sex of the
child to capture biological-based variation. The houselasid parental variables used are ethnicifya
breastfeeding measure, mother’s education, a povertgdtuati floor material, and the number of children

in the household under age five. We also include regional angrwnity dfects that have been highlighted

12The data was collected by the Guatemalan National Statistatitute (INE), with assistance and technical guidanem{the
World Bank LSMS team, from July to December 2000 . A total 05 Pfimary sampling units (PSU’s) were selected at random
from 11,170 spatial sectors (similar to USGS 7 quadranglEkg sectors were pre-designated as rural or urban basezsoltsr
from a 1994 population census. A roughly equal number ofoseatas selected for each of the eight administrative region
Guatemala.

BIndigenous people fier from their non-Indigenous counterparts in languagerégtiaee 22 non-Spanish languages spoken in
Guatemala) and often in dress. Indigenous people are digreranomically, socially, and politically marginalizeshd face many
barriers (language, economic, educational) to health abtiqservices (Pebley and Goldman, 1995; Lee et al., 2010)

10
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as significant in related studies. Specifically we includeetpf place of residence (urban versus rural),

region of residence, and community water source.

4, Results

The results in this section are provided as an example ofahger of distributional féects that can
be detected in analysis of survey data, and as a demonsti#tihie interplay between interpretations of
guantile and ordinal regression models. The model resudtpwovided in two forms. Tabular displays
of the codficients and standard errors can be found in Tables 2 and 3.e Haese results are presented
graphically in Figures 3, 4, and 5. Both models produce &yfi&rge and complex set of ciients, and
the figures were designed to facilitate comparison of thetivel magnitudes and dispersion acre'ssfor
a single variable, across variables, and between the modlbls dispersion is represented by horizontal
lines spanning the 10th to 90th quantiles of the parameggrilalition. The major dierence between the
graphical results is that the quantilexts are on the scale of HAZ whereas the ordinal regresssoiftsere
the expected change in probability, or equivalently theljsted change in prevalence. As such, beneficial
outcomes are characterized by positiveffionts in the quantile results (representing a rightwaitt ish
the conditional quantile) and negative @oaents in the ordinal results (the probability of being slfied
as stunted decreases).

Following the analytic strategy proposed above, we staddsessing whether the quantile results pro-
vide evidence of distributional complexities beyond a pewaditional location-shift. An informal assess-
ment is to check whether parameter estimates are unifommehgdsing or decreasing with quantiles and
whether those dlierences are significant. Comparing the pairwise tests af Bkapes in Table 4 and ef-
fect ordering in Figure 3, thefiects for urban, Southwest region, Northwest region, Intigs, and bare
floor are all suggestive of location-scale shifts or more jglex distributional &ects. Notice that several
other dfects, for example parents’ height or number of children, ldidwe captured adequately with a pure
location-shiffconditional mean fect. A more formal approach is to use hypothesis tests againsl
of pure location shift or a null of location-scale shift (Kd@r and Xiao, 2002). Oneffect (Southwest)
rejected the null of pure location shift at thhe=0.10 level and three others (Northeast, age, and water
delivery) rejected it at ther =0.15 level. Four ffects (Northeast, Southwest, water delivery, and educa-

tion) rejected the null of location-scale shift at #e=0.10 level** Overall, we have sficient evidence to

Critical values are 2.570( =0.01), 2.05 ¢ =0.05), and 1.774 =0.10). The test statistics for location-shift are Southwes

11
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assume that the more robust and flexible quantile specific&iwarranted. As noted in the methodology
section, this in turn has implications for the ordinal resgien, and specifically argues for the use of our
heteroskedasticity-adjusted estimator.

As a specific example of integration of the two regressiorr@gghes and their advantages over sim-
ple OLS or binary models, we explore in detail thiéeets for the binary ethnicity covariategdino vs
Indigenous). At the most basic level there is evidence ofesbaightened prevalence of stunting for Indige-
nous based on Table 1. To get a visual sense of the disthilaltissues we can compare the unconditional
densities for the Indigenous and Ladino subpopulationgufiei 2). Comparind.adinoto Indigenous the
guantiles shift left unequally with the smallest magnitstiéft for the lowest quantile and the largest mag-
nitude for the highest quantile. This reflects the move fromose dispersed to less dispersed distribution
and is clearly evident in the figure. Notice that from the dil@shifts alone we cannot discern the implied
changes in prevalence without assuming a functional formidth distributions. Because of the leftward
shift, prevalence for stunting and severe stunting ineredsle prevalence of non-stunting decreases.

We need to move to a regression framework to control for caitipoal dfects that might confound the
simple unconditional distributional analysis of ethnjcitFrom the quantile regression results we see that
after controlling for other covariates, the conditionaiftshin quantiles retain the same orderinge{(r =
0.26) < |Beth(t = 0.49) < |Beth(t = 0.91)); so the complex distributional features have persistesindJ
simple linear regression for the same model would yield hnieity effect of -0.34 and would imply equiv-
alent shifts of that amount for all quantilés.As noted in section 2.3, the relatively smaller scale of the
Indigenous distribution, controlling for other compaoaital efects, suggests that the subpopulation is more
easily targeted than if there had been a leftward shift andaease in scale.

The ordinal regression allows us to directly explore changgrevalence that are not apparent from the
guantile results. Using the two-stage estimator from sai2, yields the parameter estimates in Table 3
and post-processing of the bootstrap sample estimateg agémage predictive comparisons yields Figures
4 and 5. The expected changes in prevalence of severe gfusiimting, and no stunting retain the same
relative ordering as our analysis based on simple densitypedisons, but the magnitudes change after

controlling for covariates (see Figure 4). The change iwvagle:ce of stunting, conditional on no severe

(1.95), Northeast (1.72), age (1.76), and water deliveigelpinside 1.74, pipes outside 1.74, well 1.71, other 1.G8)e test
statistics for location-scale shift are Northeast (1. @)uthwest (1.85), water delivery (pipes inside 1.62, pipetside 1.67,
well 1.94, other 1.65), and education (primary 1.78, seaondr more 1.61). For the full models, the test statisticseng3.64
(location-shift) and 24.73 (location-scale) were below thitical values. Full tests results are available fromahthors.

Note that any predictions out of an OLS model that are usetido assess prevalence#@i”=l I(Yi < —2) would be wrong
since it imposes a symmetric distribution.
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stunting is isolated in Figure 5, allowing us to assess timpl& lower tail of a binary outcome rather than
thinking about the complex set of changes that occur ovetipieilcut-points as a distribution shifts and

changes shape. There is an increase in prevalence of alrhi@n0ng indigenous even after controlling for
other covariates. This is a result that can be easily adaptedhe policy context in support of targeting.

While both models provide complementary insights into tfieat of ethnicity that are sensitive to changes
in shapes of underlying distributions, the ordinal regassesults give us direct insights into changes in
prevalence that will be more easily digested and understopdlicy settings.

The heteroskedasticity adjustment is evident in the ctaimgparameter estimates from the two-stage
estimator that (Table 3) and unadjusted ordinal regresdiable A.5). The unadjustegihy<-3) = 0.11
and the adjustegtethy<-3) = 0.26 more than doubles; and the unadjusie@y--») = 0.63 and adjusted
Yeth(y<-2) = 0.42 while closer capture a clear adjustmefiieet. Those dferences in parameter estimates
also carry through to the average predictive comparisoriso Aote that in the case where covariate es-
timates suggest only a location-shiffext (e.g. age or number of children), the unadjusted andsttju
ordinal regression parameter estimates are roughly equal.

The assessment of significarffects from the ordinal regression results can also benefiefgyring
to significance of the samdfects in the quantile regression. As noted above, the heaskic-corrected
estimates are successful in removing bias, but they areetisent than the uncorrected estimates, and
ordinal regression is already les$i@ent than quantile regression because of informationitotfige trans-
formation of a continuous variable to binary outcomes. Hamwesince the ordinal regressioffects are
reflecting changes in quantiles through the distributiamcfion, the information about significance in the
guantile results can be used as an additional source ofafiion in evaluating the results of the ordinal

regression.
5. Discussion and Conclusions

In this paper we compared the results of two methods usefVatuating correlates of child stunting.
We first illustrated the theoretical and econometric linksAeen two common statistical models: quantile
and ordinal regressions. We then used child malnutriticBuatemala as a case study, and demonstrate the
insights that can be gained from a interpretation that reflac integration of the insights drawn from each
model.

At the most basic level of sign and significance @feets, the models provide us with results that

are already known - ethnicity, sanitation and place of essi@ have notable impacts on malnutrition out-
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comes. Apart from the existence of numerous studies rexptiiese patterns, these relationships between
malnutrition outcomes and various individual, househaid parental characteristics are hinted at in basic
descriptive tables presenting means and prevalences|eSiatyplar analysis can be used to highlighfet
ences in prevalence while regression models provide itfsighuance ensuring that the more complicated
relationships are not masked by confounding or aggregaftects. Regression models therefore provide
a frequently used strategy enabling analystadpustfor characteristics not of prime interest. And while
regression analysis represents a more complex analysicthas-tabulations, even without extensive sta-
tistical training, policy-makers are fairly well versedapplying model results in a relevant way, primarily
through the use of prevalence values. Based on this resdwalever, we suggest that employing a single
regression modeling strategy may not indeed be adequatdlyocapture the patterns underlying under-
nutrition in the developing world. We have demonstrated Hyaslightly increasing the complexity of the
analytic strategy — joint consideration of quantile regi@sand ordinal regression models — the results pro-
vide a more complete representation of actual patternsrameldse the policy utility of the interpretations.

We conclude that while the expected changes in prevalerssdlmn estimates from ordinal regression
are more easily explained in a policy setting, there areidigtonal features that enrich the interpretation
that can only be isolated using quantile regression. Spabifi quantile regression allows analysts to
identify possible changes in the scale or shape of the donditdistribution; information that may also
prove useful for policy. We discussed the approach to pdtagning in section 2.3 and return to policy
considerations in our discussion of the results for Indigesnchildren. We noted that the quantile regression
reveals a reduced scale, implying more uniform stuntingrajidigenous and thus making the Indigenous
a good target for intervention. The ordinal results com@etthis finding with an estimate of thefidirence
in the prevalence of stunting among Indigenous kadino after controlling for compositionalfiects of
the two populations. The prevalencdfdience provides a target for the magnitude of reductionnttigiht
be possible to achieve through targeted policy. We sugfestan analyst’s understanding of the process
under study, the policy utility, and a policy audience’sliabto engage with the results are each improved
if the two regression approaches are used in combination.

Finally, if quantile regression is warranted, we noted trdinal regression results will be inconsistent.
We proposed a two-stage estimator for ordinal regressiimig uesiduals from a first stage median regression
to remove scalingféects in the index function of the ordinal regression modéle &pproach we describe

in this paper could be useful in related research in whicticoaus data is grouped into discrete categories
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(this is frequently the case for analysis of anthropometitad

There are a few remaining issues that we plan to take up indfuesearch. While the estimation strat-
egy proposed resolved a critical problem in making stalyi valid comparisons between guantile and
ordinal regression, there are other econometric issuésrtag present in other research settings. In this
paper we proposed a strategy for an unfocused analysis éalrbasic patterns of covariation. If analysis
instead focuses on a specific policy treatmeffiéa, or more generally aims for causal interpretations of
regression fects, the estimation strategy will also need to accountridogeneity. The instrumental vari-
ables estimator proposed by Chernozhukov and Hansen (2008) can be used to deal with endogeneity
in quantile regression. For ordinal regression we suspetthe residual method proposed by (Terza et al.,
2008) could be seemlessly imbedded in framework we proposthis paper. More general issues of unob-
served heterogeneity will need to be considered for partal dais is an active research area for quantile
regression. For ordinal regression we plan to investigdtetiner existing strategies for fixed or random

effect estimators can be incorporated into the two-stage a&immtroduced in this paper.
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Variable Severely Malnourished  Healthy Total
Malnourished
HAZ<-3 -3<HAZ <-2 HAZ>-2

Observations 402 350 768 1,520
HAZ -3.92 -2.47 -0.69 -2.04
Urban 0.27 0.28 0.48 0.37
Region: Metropolitan 0.20 0.15 0.25 0.21
Region: North 0.10 0.10 0.09 0.10
Region: Northeast 0.04 0.09 0.13 0.09
Region: Southeast 0.07 0.11 0.08 0.09
Region: Central 0.10 0.11 0.12 0.11
Region: Southwest 0.28 0.28 0.22 0.25
Region: Northwest 0.19 0.12 0.08 0.12
Region: Peten 0.02 0.04 0.05 0.04
Sex (male) 0.56 0.49 0.52 0.52
Age (months) 3.68 3.83 3.63 3.69
Parents’ height -0.36 -0.24 0.35 0.01
Indigenous 0.57 0.57 0.26 0.42
Water (surface) 0.11 0.10 0.07 0.09
Water (pipes in house) 0.38 0.49 0.59 0.51
Water (pipes on property) 0.17 0.13 0.13 0.14
Water (piped from well) 0.09 0.02 0.01 0.04
Water (other) 0.25 0.26 0.20 0.23
Breastfed 6 months 0.61 0.64 0.71 0.66
Mother’s education (None) 0.58 0.43 0.31 0.42
Mother’s education (Primary) 0.32 0.48 0.42 0.40
Mother’s education (Secondary 0.10 0.08 0.27 0.18
Number of children 2.08 2.00 1.71 1.88
Bare floor 0.72 0.54 0.36 0.51
Poverty 0.75 0.75 0.48 0.62

Table 1: Weighted means and proportions
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Variable =026 =049 =092

B SE B SE B SE
Intercept -1.597 (0.319) -0.978 (0.256) 1.262 (0.657)
Urban 0.050 (0.111) 0.166 (0.099) 0.46% (0.170)
Region: North 0.080 (0.172) 0.287 (0.169) 0.095 (0.368)
Region: Northeast 0.042 (0.177) 0.059 (0.176) 0.402 (0.334
Region: Southeast -0.306 (0.200) -0.171 (0.168) 0.031 19.3
Region: Central -0.267 (0.151) -0.104 (0.156) -0.199 (0.251)
Region: Southwest -0.480 (0.163) -0.155 (0.187) 0.369 (0.309)
Region: Northwest -0.523 (0.155) -0.306 (0.150) -0.046 (0.354)
Region: Peten 0.234 (0.172) 0.133 (0.144) -0.288 (0.293)
Sex (male) -0.176 (0.081) -0.151 (0.078) -0.059 (0.153)
Age (months) -0.095 (0.034) -0.119 (0.029) -0.225° (0.062)
Parents’ height 0.544 (0.067) 0.555° (0.058) 0.520° (0.093)
Indigenous -0.189 (0.112) -0.327 (0.102) -0.559 (0.214)
Water (pipes in house) 0.017 (0.197) 0.160 (0.146) -0.350 .50@)
Water (pipes on property) -0.330 (0.212) -0.167 (0.175) 860. (0.512)
Water (piped from well) -0.723 (0.326) -0.492 (0.311) -0.752 (0.612)
Water (other) -0.144 (0.201) 0.049 (0.150) -0.179 (0.486)
Breastfed 6 months 0.133 (0.093) 0.108 (0.089) 0.194 (90.152
Mother’s education (Primary) 0.236 (0.106) 0.155 (0.102) 0.054 (0.185)
Mother’s education (Secondary 0.419* (0.139) 0.207 (0.143) 0.019 (0.224)
Number of children -0.169 (0.061) -0.231" (0.054) -0.236 (0.100)
Bare floor -0.280° (0.102) -0.145 (0.084) -0.011 (0.169)
Poverty -0.193 (0.118) -0.241 (0.098) -0.186 (0.181)

Table 2: Quantile regression results. Standard errorsasedoon a pairs cluster bootstrap estimator. Symbols iredieaults of
tests forH, : B(r) = 0; @ < 0.01 (**), « < 0.05 (%), < 0.1 () >0.1()
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Variable y<-3 y< -2

v SE vy SE
Intercept -1.645 (0.433) -1.209° (0.392)
Urban -0.310 (0.167) -0.235 (0.123)
Region: North -0.360 (0.290) -0.318 (0.235)
Region: Northeast -0.360 (0.467) 0.051 (0.246)
Region: Southeast -0.205 (0.324) 0.228 (0.236)
Region: Central 0.053 (0.266) 0.014 (0.212)
Region: Southwest -0.012 (0.287) 0.134 (0.235)
Region: Northwest 0.181 (0.256) 0.324 (0.212)
Region: Peten -0.562 (0.342) -0.053 (0.219)
Sex (male) 0.138  (0.117) 0.140 (0.109)
Age (months) 0.042 (0.047) 0.147 (0.041)
Parents’ height -0.669 (0.102) -0.652° (0.091)
Indigenous 0.256 (0.155) 0.424 (0.134)
Water (pipes in house) -0.114  (0.206) -0.168 (0.233)
Water (pipes on property) 0.203 (0.266) 0.084 (0.280)
Water (piped from well) 1.077 (0.524) 0.737 (1.043)
Water (other) -0.175  (0.221) -0.054  (0.238)
Breastfed 6 months -0.271 (0.132) -0.081 (0.122)
Mother’s education (Primary) -0.354 (0.156) -0.144 (0.134)
Mother’s education (Secondaxy -0.876* (0.402) -0.319 (0.197)
Number of children 0.233 (0.089) 0.277 (0.071)
Bare floor 0.297 (0.142) 0.069 (0.113)
Poverty 0.292 (0.195) 0.242 (0.125)

Table 3: Ordinal regression results. Standard errors aedoan a pairs cluster bootstrap estimator.
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Variable Null Hypothesisp(zi) = B(r;)

7=(0.26,049) 7=(0.49091) t=(0.260.91)

Urban 0.203 0.029
Region: North 0.190 0.307
Region: Northeast 0.459 0.121
Region: Southeast 0.242 0.328
Region: Central 0.292 0.408
Region: Southwest 0.032 0.017
Region: Northwest 0.156 0.105
Region: Peten 0.439 0.208
Sex (male) 0.231 0.147
Age (months) 0.281 0.003
Parents’ height 0.307 0.305
Indigenous 0.176 0.038
Water (pipes in house) 0.366 0.254
Water (pipes on property) 0.391 0.131
Water (piped from well) 0.406 0.466
Water (other) 0.253 0.418
Breastfed 6 months 0.372 0.337
Mother’s education (Primary) 0.273 0.289
Mother’s education (Secondary 0.113 0.288
Number of children 0.229 0.287
Bare floor 0.131 0.219
Poverty 0.297 0.253

0.007
0.292
0.112
0.192
0.326
0.000
0.033
0.264
0.064
0.001
0.307
0.009
0.295
0.192
0.506
0.446
0.335
0.235
0.112
0.207
0.079
0.319

Table 4: P-values from pairwiseftirence in slope tests.
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Figure 1: HAZ distribution for children aged 12 to 36 months
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Figure 2: Unconditional densities comparing Indigenoukadino.
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Figure 3: Quantile regression results. Standard errorbased on pairs cluster bootstrap. Shading indicates sesiulests for
Ho : B(r) = 0; a < 0.05 (black),a < 0.1 (gray),a > 0.1 (white)
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Figure 4: Ordinal regression results. Average Predictiom@arisons of unconditional probabilities. Shading iatks results of
tests forH, : B(r) = 0; @ < 0.05 (black),a < 0.1 (gray),a > 0.1 (white)
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Figure 5: Ordinal regression results. Average Predictiom@arisons of continuation ratio probabilities. Shadimdjéates results

of tests forH, : B(7) = 0; @ < 0.05 (black),« < 0.1 (gray),« > 0.1 (white)
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Appendices

Appendix A. Ordered logit parameter s with no heteroskedasticity adjustment

Variable y<-3 y< -2

v SE v SE
Intercept -1.59%¢ (0.519) -1.50# (0.480)
Urban -0.336 (0.205) -0.324 (0.159)
Region: North -0.422 (0.414) -0.465 (0.314)
Region: Northeast -0.702 (0.459) -0.134 (0.352)
Region: Southeast -0.259 (0.406) 0.393 (0.310)
Region: Central 0.040 (0.363) -0.002 (0.289)
Region: Southwest 0.162 (0.374) 0.204 (0.296)
Region: Northwest 0.187 (0.362) 0.204 (0.307)
Region: Peten -0.943 (0.394) -0.211 (0.303)
Sex (male) 0.221 (0.135) 0.161 (0.128)
Age (months) 0.037 (0.055) 0.179 (0.053)
Parents’ height -0.751 (0.115) -0.926° (0.107)
Indigenous 0.114 (0.176) 0.625 (0.164)
Water (pipes in house) -0.140  (0.257) -0.200 (0.257)
Water (pipes on property) 0.396 (0.312) 0.180 (0.290)
Water (piped from well) 1.523 (0.427) 1.081 (0.639)
Water (other) 0.051 (0.266) -0.034 (0.253)
Breastfed 6 months -0.320 (0.139) -0.116 (0.136)
Mother’s education (Primary) -0.533 (0.162) -0.102 (0.147)
Mother's education (Secondaty -0.709  (0.303) -0.370 (0.253)
Number of children 0.249 (0.092) 0.320° (0.079)
Bare floor 0.417 (0.163) 0.117 (0.147)
Poverty 0.113  (0.198) 0.246 (0.160)

Table A.5: Ordered logit parameters, no adjustment forrbekedasticity
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